

FileMaker® 8
ODBC and JDBC Developer’s Guide

© 2004-2005 FileMaker, Inc. All Rights Reserved.
FileMaker, Inc.
5201 Patrick Henry Drive
Santa Clara, California 95054
FileMaker is a trademark of FileMaker, Inc., registered in the
U.S. and other countries, and ScriptMaker and the file folder logo
are trademarks of FileMaker, Inc.

FileMaker documentation is copyrighted. You are not authorized
to make additional copies or distribute this documentation
without written permission from FileMaker. You may use this
documentation solely with a valid licensed copy of FileMaker
software.
All persons and companies listed in the examples are purely
fictitious and any resemblance to existing persons and companies
is purely coincidental.

Credits are listed in the Acknowledgements document provided
with this software.

For more information, visit our web site at www.filemaker.com.

Edition: 01

Contents

Chapter 1

Introduction 7

About this guide 7
Using ODBC and JDBC with FileMaker 7

Using a FileMaker database file as a data source 8
Networking requirements 9
Using FileMaker Pro as a client application 9

Updating files from previous versions 9
If you previously shared a FileMaker database file as a data source 9
If you previously used FileMaker Pro as a client to access a data source 10

Chapter 2

Using ODBC to share FileMaker data 11

About ODBC 11
Using the ODBC client driver 12
Accessing a FileMaker database file - overview 12
Accessing a FileMaker database file from a Windows application 13

Installing the ODBC client driver (Windows) 13
Specifying ODBC client driver properties for a FileMaker DSN (Windows) 13
Verifying access via ODBC (Windows) 15

Accessing a FileMaker database file from a Mac OS application 15
Installing the ODBC client driver (Mac OS) 15
Configuring the ODBC client driver (Mac OS) 16
Specifying ODBC client driver properties for a FileMaker DSN (Mac OS) 16
Verifying access via ODBC (Mac OS) 17

Chapter 3

Using JDBC to share FileMaker data 19

About JDBC 19
Using the JDBC client driver 19

Installing the JDBC client driver 20
About the JDBC client driver 20
Using a JDBC URL to connect to your database 20
Specifying driver properties in the URL subname 22

Verifying access via JDBC 23

4 FileMaker ODBC and JDBC Developer’s Guide
Chapter 4
Supported standards 25

Support for Unicode characters 25
SQL statements and clauses 25

SELECT statement 25
DELETE statement 28
INSERT statement 29
UPDATE statement 30
CREATE TABLE statement 30
ALTER TABLE statement 31
CREATE INDEX statement 31
DROP INDEX statement 32
FROM clause 32
WHERE clause 33
GROUP BY clause 33
HAVING clause 33
UNION operator 33
ORDER BY clause 34
FOR UPDATE clause 34

SQL aggregate functions 35
SQL expressions 35

Field names 36
Constants and literals 36
Exponential/scientific notation 37
Numeric operators 37
Character operators 37
Date operators 37
Relational operators 38
Logical operators 39
Functions 39
Operator precedence 41

ODBC Catalog functions 42
JDBC Meta Data functions 42

Appendix A
Mapping FileMaker fields to ODBC data types 43

Appendix B
Mapping FileMaker fields to JDBC data types 45

 | Contents 5
Appendix C

ODBC and JDBC error messages 47

ODBC error messages 47
ODBC driver error messages 47
ODBC Driver Manager error messages 47
SequeLink Client error messages 47
SequeLink Server error messages 48
Data source error messages 48

JDBC error messages 48
JDBC driver error messages 48
SequeLink Server error messages 48
Data source error messages 49

Index 51

6 FileMaker ODBC and JDBC Developer’s Guide

Chapter 1
Introduction

Welcome to the FileMaker® ODBC and JDBC Developer’s Guide. This guide explains concepts and details
to help you share FileMaker data with other applications, using ODBC (Open Database Connectivity) and
JDBC (Java Database Connectivity). This guide also documents how the ODBC and JDBC client drivers,
when used with FileMaker Pro and FileMaker Server Advanced, support the industry standards for ODBC,
JDBC, and SQL (Structured Query Language).

You can use FileMaker Pro, FileMaker Pro Advanced, or FileMaker Server Advanced, to create and test
your database solution. You can then share your FileMaker database solution as a data source with ODBC-
and JDBC-compliant applications, or access other ODBC data sources using your FileMaker database
solution as a client application.

About this guide
1 This document contains information to access and share data using ODBC and JDBC with

FileMaker Pro 8, FileMaker Pro 8 Advanced, and FileMaker Server 8 Advanced only. For information
on using ODBC and JDBC with previous versions of FileMaker Pro, download documents from
www.filemaker.com/odbc.

1 This guide assumes that you are familiar with the basics of using ODBC and JDBC, and constructing
SQL queries. Refer to a third-party book for more information on these topics.

1 For step-by-step information on FileMaker Pro features, including accessing other data sources via
ODBC, refer to FileMaker Pro Help.

1 FileMaker Pro documentation uses the term web publishing to refer to databases that users can access on
the Internet or on an intranet using a web browser.

1 This guide uses “FileMaker Pro” to refer to both FileMaker Pro and FileMaker Pro Advanced, unless
describing specific FileMaker Pro Advanced features.

1 This guide uses “FileMaker Server” to refer to FileMaker Server 8 Advanced, which supports sharing
FileMaker database files with other applications using ODBC and JDBC.

Important You can download PDFs of FileMaker 8 documentation from www.filemaker.com. Any updates
to this document are also available from www.filemaker.com/odbc.

Using ODBC and JDBC with FileMaker
ODBC and JDBC are application programming interfaces (APIs). These APIs give client applications a
common language for interacting with a variety of data sources and database services, including
FileMaker Pro and FileMaker Server.

All applications that support ODBC and JDBC recognize a basic subset of SQL statements. Working with
SQL, you can use other applications (like spreadsheets, word processors, and reporting tools) to view,
analyze, and modify FileMaker data.

8 FileMaker ODBC and JDBC Developer’s Guide
SQL is passed through the ODBC and JDBC interfaces to the FileMaker host of the data source, performing
queries such as SELECT first_name, last_name FROM customers WHERE city='Paris' and
making updates such as the creation of a new record with INSERT INTO customers (first_name,
last_name) VALUES ('Jane','Smith').

Using a FileMaker database file as a data source
You can use FileMaker Server to host a FileMaker database file as a data source, sharing your data with
other applications using ODBC and JDBC. FileMaker Server allows up to 50 connections and supports local
access (same computer) and remote access (both for middleware such as web servers, and for remote client
access from desktop productivity applications).

You can use FileMaker Pro to host a FileMaker database file as a data source, sharing your data with client
applications using ODBC and JDBC. FileMaker Pro allows up to five connections and supports local access
(same computer) only.

The xDBC plug-in component you need for sharing your data with other applications is automatically
installed with FileMaker Server and FileMaker Pro.

To access a hosted FileMaker database file, you need to install the corresponding ODBC or JDBC client
driver. The client drivers are available through a separate installation on your FileMaker CD in the folder
\xDBC. You can also download the latest versions of the client drivers and PDFs of FileMaker 8
documentation from www.filemaker.com/odbc. If you’ll be hosting a FileMaker database file using
FileMaker Server, make the client drivers available to remote users.

If your FileMaker database solution uses more than one FileMaker database file, all of the database files
must be on the same computer.

Client applications sometimes use different terminology for accessing a data source. Many applications
have menu items with names such as Get external data or SQL query. Review the documentation or Help that
comes with your application.

Chapter 4, “Supported standards,” describes the SQL statements that the ODBC and JDBC client drivers
support when used with FileMaker Pro and FileMaker Server. For more information on constructing SQL
queries, refer to a third-party book.

Important If you disable ODBC/JDBC sharing after it's already been on, a data source hosted by
FileMaker Server or FileMaker Pro immediately becomes unavailable. The database administrator doesn’t
have the capability to alert ODBC and JDBC client applications about the data source’s availability (the
administrator can communicate only with FileMaker database file clients). No errors are reported, and the
client application should notify users that the data source is not available and transactions cannot be
completed. If a client application attempts to connect to an unavailable FileMaker database file, a message
explains that the connection failed. If you host your FileMaker database file on Mac OS X 10.3, restart
FileMaker Pro or FileMaker Server before you re-enable ODBC/JDBC sharing (restarting is not necessary
in Mac OS X 10.4).

See the Installing FileMaker ODBC and JDBC Client Drivers guide to install the driver files needed for
accessing a FileMaker data source.

Chapter 1 | Introduction 9
Limitations with third-party tools

Microsoft Query Wizard

1 In a FileMaker data source, you cannot access table or column names that use High ASCII or double-
byte characters. Instead, use Microsoft Query and manually enter the characters, enclosed in double
quotation marks.

Microsoft Access

1 In a FileMaker data source, you cannot access table or column names that use High ASCII or double-
byte characters.

1 You cannot link to a FileMaker data source; however, you can import the FileMaker data source.

Networking requirements
You need a TCP/IP network when using FileMaker Server 8 to host a FileMaker database file as a data
source over a network. FileMaker Pro 8 supports local access (same computer) only.

Using FileMaker Pro as a client application
You can use FileMaker Pro as an ODBC client application, interacting with data sources on the same
computer or over a network.

Limitations with third-party tools

Microsoft SQL Server

1 When you export decimal, float, money, or numeric data to a FileMaker database file, the auto-enter field
option Calculated value is set in the database. The option truncates values to zero decimal places using the
calculation Truncate(fieldname;0). If you deselect the option in the created database and then repeat the
export, the auto-enter field option remains deselected.

Updating files from previous versions
FileMaker Pro 8 can open files created in earlier versions of FileMaker. See the Converting FileMaker
Databases from Previous Versions guide for information.

Note FileMaker Server 8 can host FileMaker Pro 8 and FileMaker Pro 7v3 databases files.
FileMaker Server 8 cannot host or convert earlier versions of FileMaker Pro database files.

If you previously shared a FileMaker database file as a data source
If you used LDAC (Local Data Access Companion) or RDAC (Remote Data Access Companion) to share a
database file in previous versions, you’ll need to make two changes. First, you need to set up users to belong
to an account that has the extended privilege of Access via ODBC/JDBC (as part of the account’s privilege
set). Then, you need to enable your FileMaker Server or FileMaker Pro host for ODBC/JDBC sharing (in
FileMaker Pro, choose Edit menu > Sharing > ODBC/JDBC and turn on sharing).

10 FileMaker ODBC and JDBC Developer’s Guide
See FileMaker Pro Help for details about sharing via ODBC/JDBC, and for setting up accounts and
privilege sets.

Note In previous versions of FileMaker Server and FileMaker Pro, you needed to create only one DSN
(Data Source Name) for the host application when configuring a driver for access via ODBC. The one DSN
allowed you to access any of your FileMaker database files as a data source. Beginning with
FileMaker Server 7 and FileMaker Pro 7, you must create a DSN for each individual FileMaker database
file you want to access as a data source. If you have previously set up access through one DSN that allows
tables to be spread among several FileMaker database files, you’ll need to consolidate those tables into a
single database file (or create several DSNs).

If you previously used FileMaker Pro as a client to access a data source
The drivers you configured to access the data source should still work. See www.filemaker.com/odbc for
links to third-party vendors providing updated drivers. Additionally, Windows includes client drivers, such
as SQL Server driver, with the operating system.

Important On Mac OS, OpenLink iODBC drivers conflict with the drivers provided in earlier versions of
FileMaker. If you install the OpenLink iODBC drivers, you can no longer use the Text, Oracle, or SQL
Server drivers included in earlier versions of FileMaker Pro.

See FileMaker Pro Help for details about using FileMaker Pro to access other data sources via ODBC.

Chapter 2
Using ODBC to share FileMaker data

Use the ODBC client driver to connect to a FileMaker data source from another application. The application
that uses the ODBC client driver can directly access the data in a FileMaker database file. In Windows, the
FileMaker ODBC client driver is DataDirect 32-BIT SequeLink 5.4. In Mac OS, the FileMaker ODBC client
driver is ivslk18.dylib.

You can also use FileMaker Pro as a client application, interacting with records from another data source
via ODBC using SQL. See FileMaker Pro Help for details about accessing a data source via ODBC.

About ODBC
ODBC is an API that enables applications to access data from many database management systems. ODBC
gives client applications a common language for interacting with data sources and database services.

All applications that support ODBC recognize a common subset of statements. SQL lets you use other
applications (like spreadsheets, word processors, and reporting tools) to view, analyze, and modify
FileMaker data. See chapter 4, “Supported standards,” for the SQL statements, functions, and expressions
that the ODBC client driver supports.

Your application can talk directly to a FileMaker database file by using the ODBC client driver. Your SQL
statements are delivered to the FileMaker host of the database file and the results of those statements are
sent back to you. If you use FileMaker Server to host a FileMaker database file as a data source, the database
file can be located on another machine (the server machine) connected to the network, while your client
application is located on your machine (the client machine). This is referred to as a client/server
configuration.

Client
Application

Oracle

Driver
Manager

SQL Server
ODBC Driver

ODBC Client
Driver

Oracle
ODBC Driver

FileMakerMicrosoft
SQL Server

ODBC components

12 FileMaker ODBC and JDBC Developer’s Guide
Using the ODBC client driver
You can use the ODBC client driver with any ODBC-compliant application. Sharing your FileMaker
database file as a data source, you can:

1 perform mail merges with Microsoft Word

1 create charts with Microsoft Excel

1 move FileMaker data to a DBMS like Microsoft SQL Server

1 further analyze your FileMaker data with query or reporting tools to create charts, construct ad-hoc
queries, and perform drill-down analysis

1 create a Microsoft Visual Basic application that shares information with FileMaker Pro

To share a FileMaker database file as a data source, use FileMaker Pro to define accounts that will need
access to the database file. Then, control access to the database file by assigning privilege sets to the
accounts, including the extended privilege of access via ODBC/JDBC. Finally, enable the FileMaker Server
or FileMaker Pro host application to share data via ODBC/JDBC.

For details, see FileMaker Pro or FileMaker Server Help.

Important The ODBC client driver replaces the FileMaker Pro ODBC driver released with a previous
version of FileMaker. If you have previously set up access to a FileMaker data source using the older driver,
you’ll need to re-define access by using and configuring the new driver.

Accessing a FileMaker database file - overview
From an ODBC-compliant application, you can construct SQL queries to access a FileMaker database file.
The ODBC client driver must be installed on the computer generating the SQL query.

To access a FileMaker database file:

1. In FileMaker Pro, review the privilege sets you’ve assigned to accounts that will access the database file.

Accounts that need access must use a privilege set with the extended privilege of Access via ODBC/JDBC.

2. Enable the FileMaker Server (via FileMaker Server Admin) or FileMaker Pro host application to share
data via ODBC/JDBC.

FileMaker Server Admin (Windows): Choose Action menu > Properties > Clients tab, click Enable Client
Services, then select Allow ODBC and JDBC connections.

FileMaker Server Admin (Mac OS): Click the Configure button, click the Clients tab, then select Allow
ODBC and JDBC connections.

FileMaker Pro (Windows): Choose Edit menu > Sharing > ODBC/JDBC and set ODBC/JDBC Sharing to On.

FileMaker Pro (Mac OS): Choose FileMaker Pro menu > Sharing > ODBC/JDBC and set ODBC/JDBC
Sharing to On.

3. Make sure the FileMaker database file you want to access is hosted and available.

If your FileMaker database solution uses more than one FileMaker database file, all of the database files
must be on the same computer.

Chapter 2 | Using ODBC to share FileMaker data 13
4. Connect to the FileMaker data source.

Client applications sometimes use different terminology for accessing a data source via ODBC. Many
applications have menu items with names such as Get external data or SQL query. Review the
documentation or Help that comes with your application for details.

5. Construct and execute a SQL query in the client application.

Each FileMaker database file that is open and set up for access is a separate data source (you create a
DSN for each individual FileMaker database file you want to access as a data source).

Each database can have one or more tables. FileMaker fields are represented as columns. The complete
field name, including any non-alphanumeric characters, displays as the column name.

Note In Windows, Microsoft Access can import only 32 or fewer fields at one time via ODBC from a
FileMaker database file. If your database file has more than 32 fields, import them in increments of 32.

Important If you host your FileMaker database file on Mac OS, client drivers cannot access database names
or table names that contain upper-ASCII, double-byte, or Japanese characters. If your FileMaker database
file uses these characters, create a second database and use only ASCII characters for the filename and table
names. In the second database, create a file reference that points to the data in your original database file.
Share both files with ODBC/JDBC, but use the second database file when defining the DSN.

Accessing a FileMaker database file from a Windows application
Installing the ODBC client driver (Windows)
The ODBC client driver is available through a separate installation on the FileMaker Server Web Publishing
CD and the FileMaker Pro CD in the folder \xDBC\ODBC Client Driver Installer. You can also download
the latest version of the ODBC client driver and PDFs of FileMaker ODBC documentation from
www.filemaker.com/odbc.

For installation instructions, see Installing FileMaker ODBC and JDBC Client Drivers, which is available
as a PDF document on the FileMaker Pro CD in the folder \xDBC\Electronic Documentation, and in the
folder \English Extras\Electronic Documentation where you installed FileMaker Server.

Specifying ODBC client driver properties for a FileMaker DSN (Windows)
Create a DSN for each individual FileMaker database file you want to access as a data source (in previous
versions of FileMaker Server and FileMaker Pro, you created only one DSN for all FileMaker database files
hosted by the application). The DSN identifies the FileMaker ODBC client driver, the host application
(FileMaker Server or FileMaker Pro), and the FileMaker database file you’re accessing as a data source.

To set up or change ODBC client driver properties:

1. Open the ODBC Data Source Administrator control panel.

In the Windows Control Panel, choose Administrative Tools > Data Sources (ODBC).

In Windows XP, Administrative Tools appear in the Performance and Maintenance category.

2. Click the System DSN tab.

If you set up your data source as a User DSN or File DSN, click the corresponding tab.

14 FileMaker ODBC and JDBC Developer’s Guide
3. Click Add.

If you’re changing the properties of an existing data source, select the data source, click Configure, and
skip to step 6.

4. Choose DataDirect 32-BIT SequeLink 5.4 from the list of drivers.

If the driver is not listed in the ODBC Data Source Administrator, look for the (Default) entry of the
registry key HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers using Regedit
(choose Start menu > Run > Regedit). The Data for this entry should be (value not set). If instead you see
a blank string, right-click (Default), choose Delete, and click Yes to confirm. This resets the entry to
(value not set). Uninstall and reinstall your ODBC client driver to see it in the ODBC Data Source
Administrator.

5. Click Finish.

The DataDirect SequeLink for ODBC Setup dialog appears, with the General tab selected.

6. For Data Source Name, type a name that will be meaningful to others accessing the FileMaker data source.

An additional Description is optional.

Be sure Use LDAP is cleared. No translator .DLLs are included with the ODBC client driver (so clicking
Translate will not allow you to configure an ODBC translator).

7. For SequeLink Server Host, enter the location of your data source.

If you’re connecting to a FileMaker database file hosted by FileMaker Pro on your local machine, type
localhost (or 127.0.0.1).

If you’re connecting to a FileMaker database file hosted by FileMaker Server over a network, type the
IP address of FileMaker Server.

8. For SequeLink Server Port, type 2399.

9. For Server Data Source, type the filename of the FileMaker database file you’re using as a data source
(don’t type the filename extension).

If you’ve enabled sharing via ODBC/JDBC in the FileMaker Pro or FileMaker Server host application,
click the button to the right of Server Data Source to display the filenames of currently open FileMaker
database files for you to choose from.

If your database name contains spaces, replace them with the escape characters %20. For example,
serverdatasource=MY%20DATABASE.

10. Click OK to save your data source information.

If you’re sharing another FileMaker database file, return to step 3 and set up the database file as a data
source.

11. Click OK to close the ODBC Data Source Administrator dialog box.

Important When configuring a FileMaker data source, you must specify 2399 as the SequeLink Server Port.

Chapter 2 | Using ODBC to share FileMaker data 15
Verifying access via ODBC (Windows)

To verify that you’ve correctly configured the ODBC client driver to access the FileMaker data source:

1. Open the ODBC Data Source Administrator control panel.

In the Windows Control Panel, choose Administrative Tools > Data Sources (ODBC).

In Windows XP, Administrative Tools appear in the Performance and Maintenance category.

2. Click the System DSN tab.

If you set up your data source as a User DSN or File DSN, click the corresponding tab.

3. Choose the FileMaker data source that you previously configured.

The data source name you originally entered will appear under Name, and DataDirect 32-BIT SequeLink 5.4
will appear as the Driver.

4. Click Configure.

The DataDirect SequeLink for ODBC Setup dialog box appears.

5. Click Test Connect.

You are prompted to enter your FileMaker account name (in Database User Name) and password (in
Database Password).

If the connection is OK, you’ll receive the message Connection test was successful. If the connection fails:

1 Make sure the FileMaker database file is hosted and available.

1 Update or correct your connection information.

1 Make sure your FileMaker account uses a privilege set with the extended privilege of Access via ODBC/
JDBC.

1 Verify that the FileMaker Pro or FileMaker Server host application has been set up for sharing via
ODBC/JDBC.

Accessing a FileMaker database file from a Mac OS application
If you build custom applications, use version 3.52.1 of the iODBC headers and libraries. Applications built
with version 3.51 might not be able to load the client driver.

Installing the ODBC client driver (Mac OS)
The ODBC client driver is available through a separate installation on the FileMaker Server Web Publishing
CD and the FileMaker Pro CD in the folder \xDBC\ODBC Client Driver Installer. You can also download
the latest version of the ODBC client driver and PDFs of FileMaker ODBC documentation from
www.filemaker.com/odbc

To install the ODBC client driver, copy the file SequeLink.bundle to either your System or User library. If you
don’t have an /ODBC folder, create one manually:

Library
Copy SequeLink.bundle to this
folder:

System /Library/ODBC

User /Users/<user>/Library/ODBC

16 FileMaker ODBC and JDBC Developer’s Guide
For additional information, see Installing FileMaker ODBC and JDBC Client Drivers, which is available
on the FileMaker Pro CD in the folder \xDBC\Electronic Documentation, and in the folder \English
Extras\Electronic Documentation where you installed FileMaker Server.

Configuring the ODBC client driver (Mac OS)
Configure the client driver using the ODBC Administrator bundled with the iODBC driver manager
software recommended for your client application. If you require the OpenLink ODBC Administrator, it is
bundled with the ODBC-JDBC Lite Bridge download available on the OpenLink web site.

The client driver has been tested with the following ODBC Administrators:

1 OpenLink ODBC Administrator 3.52.1 (available from OpenLink Software)

1 Apple ODBC Administrator 1.0.1 (available with Mac OS 10.3)

When configuring the client driver, you’ll be prompted to provide a brief description and the path to the
driver file:

The ODBC Administrator also allows you to optionally define keywords and a Setup File path, but the client
driver does not need that information.

Specifying ODBC client driver properties for a FileMaker DSN (Mac OS)
Create a DSN for each individual FileMaker database file you want to access as a data source (in previous
versions of FileMaker Server and FileMaker Pro, you created only one DSN for all FileMaker database files
hosted by the application). The DSN identifies the FileMaker ODBC driver, the location of the host
application, and the FileMaker database file you’re accessing as a data source.

Important The ODBC client driver for Mac OS does not support upper-ASCII, double-byte, or Japanese
characters in database names or table names. If your FileMaker database file uses these characters, create a
second database and use only ASCII characters for the filename and table names. In the second database,
create a file reference that points to the data in your original database file. Share both files with ODBC/
JDBC, but use the second database file when defining the DSN.

If you copied SequeLink.bundle
to this library: Use this driver path during configuration:

/Library/ODBC /Library/ODBC/SequeLink.bundle/Contents/MacOS/ivslk18.dylib

/Users/<user>/Library/ODBC /Users/<user>/Library/ODBC/SequeLink.bundle/Contents/MacOS/
ivslk18.dylib

Chapter 2 | Using ODBC to share FileMaker data 17
Additionally, you’ll need to specify these keyword values for the DSN:

Important If you attempt to add a DSN with the ODBC Administrator and receive the message Could not load
the driver or translator setup library, download and install the ODBC-JDBC Lite Bridge (m6I5jzzz.dmg) from
OpenLink’s web site. The download provides an ODBC Administrator that allows you to successfully
create a DSN. See www.filemaker.com/odbc for links to additional details.

Verifying access via ODBC (Mac OS)
The OpenLink ODBC Administrator allows you to verify that you’ve correctly configured the ODBC client
driver to access the FileMaker data source.

Keyword Value

Host If you’re connecting to a FileMaker database file hosted by FileMaker Pro on your local
machine, type localhost (or 127.0.0.1).

If you’re connecting to a FileMaker database file hosted by FileMaker Server over a network,
type the IP address or hostname of FileMaker Server.

Port Type 2399.

ServerDataSource Type the filename of the FileMaker database file you’re using as a data source (don’t type the
filename extension). If your database name contains spaces, replace them with the escape
characters %20. For example, ServerDataDource=MY%20DATABASE. Double-byte characters
are not supported.

18 FileMaker ODBC and JDBC Developer’s Guide

Chapter 3
Using JDBC to share FileMaker data

If you’re a Java programmer, you can use the JDBC client driver with any Rapid Application Development
(RAD) tool to visually create a Java application or applet that connects to a FileMaker data source. The Java
application or applet that uses the JDBC client driver can directly access the data in a FileMaker database
file.

About JDBC
JDBC is a Java API for executing SQL statements, the standard language for accessing relational databases.
JDBC is a name and not an acronym—although it is thought of as standing for “Java Database Connectivity”
because it is the Java equivalent for ODBC. JDBC is a low-level interface, which means that it is used to
call SQL commands directly. It is also designed to be used as a base for higher level interfaces and tools.

Your Java applet or application can talk directly to a FileMaker database file by using the JDBC client driver.
Your SQL statements are delivered to the FileMaker host of the database file and the results of those
statements are sent back to you. If you use FileMaker Server to host, the FileMaker database file you’re
using as a data source can be located on another machine (the server machine) connected to the network,
while your Java applet or client application is located on your machine (the client machine). This is referred
to as a client/server configuration.

Using the JDBC client driver
You can use the JDBC client driver with a Java compiler or RAD tool to connect with your database while
you build the code for your Java application or applet. After the Java application or applet has been created,
the JDBC client driver must be present with the files or included within the code in order for the application
or applet to communicate with the database.

To use the JDBC client driver, your Java application or applet must register the driver with the JDBC driver
manager and you must specify the correct JDBC URL from within the application or applet. You need the
JDBC URL to make the connection to the database.

DBMS proprietary protocol

Java
application

JDBC driver

FileMaker

Client machine Database server

20 FileMaker ODBC and JDBC Developer’s Guide
Installing the JDBC client driver
The JDBC client driver is available through a separate installation program on the
FileMaker Server Web Publishing CD and the FileMaker Pro CD in the folder \xDBC\JDBC
Client Driver Installer. The driver is packaged as a Java archive file (with the .jar filename extension)
containing a collection of class files. You can also download the latest version of the JDBC client driver (for
Windows or Mac OS) and PDFs of FileMaker JDBC documentation from www.filemaker.com/jdbc.

For installation instructions, see Installing FileMaker ODBC and JDBC Client Drivers, which is available
as a PDF document on the FileMaker Pro CD in the folder \xDBC\Electronic Documentation, and in the
folder \English Extras\Electronic Documentation where you installed FileMaker Server.

About the JDBC client driver
The JDBC client driver provides partial support for the JDBC 3.0 specification. For links to additional
details, see www.filemaker.com/jdbc. Also see the SequeLink Developer’s Reference available at
www.datadirect.com.

The JDBC client driver is designed to work with the Java Development Kit (JDK) 1.4. It is a Type 4 driver
— a native protocol, pure Java driver that converts JDBC calls directly into the network protocol used by
FileMaker. This type of driver offers all the advantages of Java including automatic installation (for
example, downloading the JDBC driver with an applet that uses it). The driver will work with JDK 1.3 and
Java 2 as long as you only use JDBC 1.2 calls in a Java 2 environment

The driver class and main entry point for the driver is named:

com.ddtek.jdbc.sequelink.SequeLinkDriver

Important The JDBC client driver replaces the FileMaker JDBC driver released with a previous version of
FileMaker. If you have previously set up access to a FileMaker data source using the older driver, you’ll
need to re-define access by using and configuring the new driver.

Using a JDBC URL to connect to your database
In Java, most resources are accessed through URLs (Uniform Resource Locators). A JDBC URL is used to
identify the database so the JDBC client driver can recognize and establish a connection with the database.

The JDBC URL consists of three main parts separated by colons:

jdbc:<subprotocol>:<subname>

The first part in the JDBC URL is always the JDBC protocol (“jdbc”). The subprotocol is the driver name
or the mechanism that supports multiple drivers. For the JDBC client driver, the subprotocol is sequelink.
The subname is the IP address of the machine that is hosting the FileMaker data source.

Registering the JDBC client driver and connecting to a FileMaker data source (an example)

Here is an example using JDBCTest that:

1. Registers the JDBC client driver with the JDBC driver manager

2. Establishes a connection with the FileMaker data source (the JDBC URL is jdbc:sequelink://
17.184.17.170:2399)

Chapter 3 | Using JDBC to share FileMaker data 21
3. Returns error codes

import java.sql.*;
class FMPJDBCTest
{

public static void main(String[] args)
{

// register the JDBC client driver
try {

Driver d =
(Driver)Class.forName("com.ddtek.jdbc.sequelink.SequeLinkDriver").newInstance();
} catch(Exception e) {

System.out.println(e);
}
// establish a connection to FileMaker
Connection con;
try {

con =
DriverManager.getConnection("jdbc:sequelink://17.184.17.170:2399;
user=some user;password=some password",userName,password);
} catch(Exception e) {

system.out.println(e);
}
// get connection warnings
SQLWarning warning = null;
try {

warning = con.getWarnings();
if (warning == null) {

System.out.println("No warnings");
return;

}
while (warning != null) {

System.out.println("Warning: "+warning);
warning = warning.getNextWarning();

}
} catch (Exception e) {

Sysem.out.println(e);
}

}
}

Note This example is not meant to be compiled.

22 FileMaker ODBC and JDBC Developer’s Guide
Specifying driver properties in the URL subname
Specify the user and password driver properties in the subname of the JDBC URL. These are the properties
that could be passed to the connection when calling the DriverManager.getConnection method via the
Properties parameter.

1 user: an account in the FileMaker database file that uses a privilege set with the extended privilege
Access via ODBC/JDBC

1 password: the password for the account in the FileMaker database file

Basic JDBC URL connection

Format: jdbc:sequelink://<sequelink host IP address>:<port>

This is the URL to connect to the FileMaker database file with no passwords. The port number will always
be 2399 (you can’t change the JDBC sharing to a different port).

If you are executing the JDBC URL connection on the same machine where the file is located, you can use
jdbc:sequelink://localhost:2399

Example: jdbc:sequelink://17.184.17.170:2399

JDBC URL connection with user name and password defined in the URL

Format:
jdbc:sequelink://<sequelink host IP

address>:<port>;user=<userName>;password=<password>

Example: jdbc:sequelink://17.184.17.170:2399;user=phil;password=jsp

JDBC URL connection with the database name specified in the URL

Format:

jdbc:sequelink://<sequelink host IP address>:<port>;
serverDataSource=<databasename>

Example: jdbc:sequelink://17.184.17.170:2399;serverDataSource=publications

If your database name contains spaces, replace them with the escape characters %20.

Example: jdbc:sequelink://17.184.17.170:2399;serverDataSource=MY%20DATABASE

JDBC URL connection with the database name, user name, and password specified in the URL

Format 1 (using the data store user name and password): jdbc:sequelink://<sequelink host IP
address>:<port>;serverDataSource=<databasename>;DBUser=<databaseusername>;

DBPassword=<databasepassword>

Format 2 (using the host user name and password): jdbc:sequelink://<sequelink host IP
address>:<port>;serverDataSource=<databasename>;HUser=<username>;HPassword=<p

assword>

Note If your FileMaker database solution uses many FileMaker database files, create an additional database
file that contains all the necessary external file references, table occurrences, and relationships for your
solution. Then define this additional database file as your data source in the JDBC URL. All of the
FileMaker database files must be on the same computer.

Chapter 3 | Using JDBC to share FileMaker data 23
Note Secure Socket Layer (SSL) encryption is not supported. To create a more secure JDBC solution, set
up an environment such as .ASP or .JSP, where the web server is hosting via https and communicating with
the FileMaker database file behind a firewall.

Verifying access via JDBC
When you install the JDBC client driver, you have the option of installing JDBCTest to help verify your
connections. When installing the JDBC client driver, select Install Developer’s Tools to get JDBCTest. See the
Installing FileMaker ODBC and JDBC Client Drivers PDF file for information. You can download the latest
PDFs of FileMaker 8 JDBC documentation from www.filemaker.com/jdbc.

When verifying access to a FileMaker database file via JDBC, make sure:

1 The FileMaker database file is hosted and available.

1 Your FileMaker account uses a privilege set with the extended privilege of Access via ODBC/JDBC (in the
FileMaker database file).

1 The FileMaker Pro or FileMaker Server host application has been set up for sharing via ODBC/JDBC.

1 The JDBC client driver registration and the JDBC URL are correct (the driver can be included inside the
Java Application or located on the client machine).

For additional information and examples that use Java and JDBC for general data interchange or for
publishing FileMaker data on the web, see www.filemaker.com/jdbc.

24 FileMaker ODBC and JDBC Developer’s Guide

Chapter 4
Supported standards

This chapter describes the SQL statements and constructs supported by the FileMaker ODBC and JDBC
client drivers. Use the client drivers to access a FileMaker database solution from an ODBC- or JDBC-
compliant application. The FileMaker database solution can be hosted by FileMaker Pro or
FileMaker Server.

The ODBC client driver supports ODBC 3.5 Level 1 with some features of Level 2. The JDBC client driver
provides partial support for the JDBC 3.0 specification; see www.filemaker.com/jdbc for links to additional
details, and the SequeLink Developer’s Reference available at www.datadirect.com. The ODBC and JDBC
client drivers support SQL-92 entry-level conformance, with some SQL-92 intermediate features.

Support for Unicode characters
The ODBC and JDBC client drivers support the Unicode API. However, if you’re creating a custom
application that uses the client drivers, use ASCII for field names, table names, and filenames (in case a non-
Unicode query tool or application is used).

Note To insert and retrieve Unicode data, use SQL_C_WCHAR (the SQL_C_BINARY data type is not
supported).

SQL statements and clauses
The ODBC and JDBC client drivers provide support for the following SQL statements:

The client drivers also support FileMaker data type mapping to ODBC SQL and JDBC SQL data types. See
appendix A, “Mapping FileMaker fields to ODBC data types” and appendix B, “Mapping FileMaker fields
to JDBC data types” for data type conversions. For more information on constructing SQL queries, refer to
a third-party book.

Note The ODBC and JDBC client drivers recognize only the first repetition in a repeating field. Also, the
drivers do not support portals in FileMaker Pro.

SELECT statement
Use the SELECT statement to specify which columns you're requesting. Follow the SELECT statement
with the column expressions (similar to field names) you want to retrieve (for example, last_name).
Expressions can include mathematical operations or string manipulation (for example, SALARY * 1.05).

SELECT DELETE INSERT UPDATE

CREATE TABLE ALTER TABLE CREATE INDEX DROP INDEX

26 FileMaker ODBC and JDBC Developer’s Guide
The SELECT statement can use a variety of clauses:

SELECT [DISTINCT] {* | column_expression [[AS] column_alias],...}
FROM table_name [table_alias], ...
[WHERE expr1 rel_operator expr2]
[GROUP BY {column_expression, ...}]
[HAVING expr1 rel_operator expr2]
[UNION [ALL] (SELECT...)]
[ORDER BY {sort_expression [DESC | ASC]}, ...]
[FOR UPDATE [OF {column_expression, ...}]]

Items in brackets are optional.

Note SELECT * on larger databases and SELECT statements that use table aliases or literals in the
projection list might not function correctly. To avoid potential confusion, avoid wildcards and specify table
and column names without aliases.

column_alias can be used to give the column a more descriptive name, or to abbreviate a longer column
name. For example, to assign the alias department to the column dept:

SELECT dept AS department FROM emp

Field names can be prefixed with the table name or the table alias. For example, EMP.LAST_NAME or
E.LAST_NAME, where E is the alias for the table EMP.

The DISTINCT operator can precede the first column expression. This operator eliminates duplicate rows
from the result of a query. For example:

SELECT DISTINCT dept FROM emp

Note If you attempt to retrieve data from a table with no columns, the SELECT statement fails.

Examples

The following example retrieves the names of employees who make at least 20,000:

SELECT last_name,first_name FROM emp WHERE salary >= 20000

Use this SQL clause To

FROM Indicate which tables are used in the SELECT statement.

WHERE Specify the conditions that records must meet to be retrieved (like a FileMaker Pro find
request).

GROUP BY Specify the names of one or more fields by which the returned values should be grouped.
This clause is used to return a set of aggregate values by returning one row for each group
(like a FileMaker Pro subsummary).

HAVING Specify conditions for groups of records (for example, display only the departments that
have salaries totaling more than $200,000). This clause is only valid if you have already
defined a GROUP BY clause.

UNION Combine the results of two or more SELECT statements into a single result.

ORDER BY Indicate how the records are sorted

FOR UPDATE Lock the records of the database table selected by the SELECT statement

Chapter 4 | Supported standards 27
The following example uses the ORDER BY clause to sort by both last name and first name in ascending
order:

SELECT emp_id, last_name, first_name FROM emp ORDER BY last_name,
first_name

Additional examples:

Notes from the examples

A constant is a single, literal value you can include in a SELECT statement, whereas a column is a
reference to a field in the FileMaker database file (the field can contain many distinct values).

The asterisk (*) wildcard character is shorthand for “everything”. For the example SELECT * FROM
Salespeople, the result is all the rows in the Salespeople table. For the example SELECT DISTINCT
* FROM Salespeople, the result is all the unique rows in the Salespeople table (no duplicates).

Note SELECT * statements on larger databases might not function correctly. To avoid potential confusion,
avoid wildcards and specify table and column names (without aliases).

Retrieving the contents of a container field: CAST() function and GetAs() function

You can retrieve binary data, file reference information, or data of a specific file type from a container field.

To retrieve binary data, use a standard SELECT statement. For example:

SELECT Company_Brochures FROM Sales_Data

Using Sample SQL

text constant SELECT 'CatDog' FROM Salespeople

numeric constant SELECT 999 FROM Salespeople

date constant SELECT DATE '2004-06-05' FROM Salespeople

time constant SELECT TIME '02:49:03' FROM Salespeople

timestamp constant SELECT TIMESTAMP '2004-06-05 02:49:03' FROM Salespeople

text column SELECT Company_Name FROM Sales_Data

SELECT DISTINCT Company_Name FROM Sales_Data

numeric column SELECT Amount FROM Sales_Data

SELECT DISTINCT Amount FROM Sales_Data

date column SELECT Date_Sold FROM Sales_Data

SELECT DISTINCT Date_Sold FROM Sales_Data

time column SELECT Time_Sold FROM Sales_Data

SELECT DISTINCT Time_Sold FROM Sales_Data

timestamp column SELECT Timestamp_Sold FROM Sales_Data

SELECT DISTINCT Timestamp_Sold FROM Sales_Data

BLOBa column

a. A BLOB is a FileMaker database file container field.

SELECT Company_Brochures FROM Sales_Data

SELECT GETAS(Company_Logo, 'JPEG') FROM Sales_Data

Wildcard * SELECT * FROM Salespeople

SELECT DISTINCT * FROM Salespeople

28 FileMaker ODBC and JDBC Developer’s Guide
If file or JPEG data exists, the SELECT statement retrieves the data in binary form; otherwise, the SELECT
statement returns <null>.

To retrieve file reference information (such as the file path), use the CAST function with a SELECT
statement. For example:

SELECT CAST(Company_Brochures AS VARCHAR(NNN)) FROM Sales_Data

In this example, if you:

1 Inserted a file into the container field using FileMaker Pro but stored only a reference to the file, the
SELECT statement retrieves the file reference information as type SQL_VARCHAR.

1 Inserted the contents of a file into the container field using FileMaker Pro, the SELECT statement
retrieves the name of the file.

1 Imported a file into the container field from another application, the SELECT statement displays '?' (the
file displays as Untitled.dat in FileMaker Pro).

To retrieve data of a specific file type from a container field, use the GetAs function and specify the file’s
type. For example:

SELECT GetAs(Company_Logo, 'JPEG') FROM Sales_Data

The possible file types (case sensitive) you can retrieve from a container field in a FileMaker database file
are:

DELETE statement
Use the DELETE statement to delete records from a database table. The format of the DELETE statement is:

DELETE FROM table_name [WHERE { conditions }]

Note The WHERE clause determines which records are to be deleted. If you don’t include the WHERE
keyword, all records in the table are deleted (but the table is left intact).

File Type Description File Type Description

'BMPf' Bitmap 'PCD ' Kodak PhotoCD

'EMBO' OLE container data 'PDF ' Portable Document Format

'EMF+' Windows Enhanced Metafile Plus 'PICT' Mac OS (does not have 512-byte file-based header)

'EPS ' Embedded PostScript 'PNGf' Bitmap image format

'FILE' Result of an Insert File command 'PNTG' MacPaint

'FPix' Flash (FPX) 'qtif' QuickTime image file

'FORK' Resource fork (Mac OS) '.SGI' Generic bitmap format

'GIFf' Graphics Interchange Format 'snd ' Standard sound (Mac OS raw format)

'JPEG' Photographic images 'TIFF' Raster file format for digital images

'JP2 ' JPEG 2000 'TPIC' Targa

'META' Windows Metafile (enhanced) 'XMLO' Layout objects

'METO' Windows Metafile (original) '8BPS' PhotoShop (PSD)

'moov' Old QuickTime format (Mac OS)

Chapter 4 | Supported standards 29
An example of a DELETE statement on the Employee table is:

DELETE FROM emp WHERE emp_id = 'E10001'

Each DELETE statement removes every record that meets the conditions in the WHERE clause. In this case,
every record having the employee ID E10001 is deleted. Because employee IDs are unique in the Employee
table, only one record is deleted.

INSERT statement

Use the INSERT statement to create records in a database table. You can specify either:

1 A list of values to be inserted as a new record

1 A SELECT statement that copies data from another table to be inserted as a set of new records

The format of the INSERT statement is:

INSERT INTO table_name [(column_name, ...)] VALUES (expr, ...)

column_name is an optional list of column names that provides the name and order of the columns whose
values are specified in the Values clause. If you omit column_name, the value expressions (expr) must
provide values for all columns defined in the table and must be in the same order that the columns are defined
for the table.

expr is the list of expressions giving the values for the columns of the new record. Usually the expressions
are constant values for the columns (but they can also be a subquery). You must enclose character string
values in pairs of single quotation marks ('). To include a single quotation mark in a character string value
enclosed by single quotation marks, use two single quotation marks together (for example, 'Don''t'). Date,
time, and timestamp values must be enclosed in braces {}. Logical values that are characters must be
enclosed in periods (for example, .T. or .F.). Subqueries must be enclosed in parentheses.

The following example inserts a list of expressions:

INSERT INTO emp (last_name, first_name, emp_id, salary, hire_date)
VALUES ('Smith', 'John', 'E22345', 27500, {6/5/2004})

Each INSERT statement adds one record to the database table. In this case a record has been added to the
employee database table, EMP. Values are specified for five columns. The remaining columns in the table
are assigned a blank value, meaning Null.

Note In container fields, you can INSERT only text.

The SELECT statement is a query that returns values for each column_name value specified in the column
name list. Using a SELECT statement instead of a list of value expressions lets you select a set of rows from
one table and insert it into another table using a single INSERT statement.

Here's an example of an INSERT statement that uses a SELECT statement:

INSERT INTO emp1 (first_name, last_name, emp_id, dept, salary)
SELECT first_name, last_name, emp_id, dept, salary from emp
WHERE dept = ‘D050’

30 FileMaker ODBC and JDBC Developer’s Guide
In this type of INSERT statement, the number of columns to be inserted must match the number of columns
in the SELECT statement. The list of columns to be inserted must correspond to the columns in the SELECT
statement just as it would to a list of value expressions in the other type of INSERT statement. For example,
the first column inserted corresponds to the first column selected; the second inserted to the second, and so
on.

The size and data type of these corresponding columns must be compatible. Each column in the SELECT
list should have a data type that the ODBC or JDBC client driver accepts on a regular INSERT/UPDATE of
the corresponding column in the INSERT list. Values are truncated when the size of the value in the
SELECT list column is greater than the size of the corresponding INSERT list column.

The SELECT statement is evaluated before any values are inserted.

UPDATE statement
Use the UPDATE statement to change records in a database table. The format of the UPDATE statement is:

UPDATE table_name SET column_name = expr, ... [WHERE { conditions }]

column_name is the name of a column whose value is to be changed. Several columns can be changed in
one statement.

expr is the new value for the column. Usually the expressions are constant values for the columns (but they
can also be a subquery). You must enclose character string values in pairs of single quotation marks ('). To
include a single quotation mark in a character string value enclosed by single quotation marks, use two
single quotation marks together (for example, 'Don''t'). Date, time, and timestamp values must be enclosed
in braces {}. Logical values that are characters must be enclosed in periods (for example, .T. or .F.).
Subqueries must be enclosed in parentheses.

The WHERE clause is any valid clause. It determines which records are updated.

An example of an UPDATE statement on the Employee table is:

UPDATE emp SET salary=32000, exempt=1 WHERE emp_id = 'E10001'

The UPDATE statement changes every record that meets the conditions in the WHERE clause. In this case
the salary and exempt status are changed for all employees having the employee ID E10001. Because
employee IDs are unique in the Employee table, only one record is updated.

Here's an example using a subquery:

UPDATE emp SET salary = (SELECT avg(salary) from emp) WHERE emp_id =
'E10001'

In this case, the salary is changed to the average salary in the company for the employee having employee
ID E10001.

Note In container fields, you can UPDATE only with text.

CREATE TABLE statement
Use the CREATE TABLE statement to create a table in a database file. The format of the CREATE TABLE
statement is:

CREATE TABLE table_name table_element_list [NOT NULL]

Within the statement, you specify the name and data type of each column.

Chapter 4 | Supported standards 31
table_name and table_element_list have a 100 character limit. Defining a column to be NOT NULL
automatically selects the Not Empty Validation Option for the corresponding field in the FileMaker database
file. The field will be flagged as a Required Value in the Fields tab of the Define Database dialog box in
FileMaker Pro.

Examples

ALTER TABLE statement
Use the ALTER TABLE statement to change the structure of an existing table in a database file. You can
modify only one column in each statement. The formats of the ALTER TABLE statement are:

ALTER TABLE table_name ADD [COLUMN] column_definition

ALTER TABLE table_name DROP [COLUMN] unqualified_column_name

You must know the table’s structure and how you want to modify it before using the ALTER TABLE
statement.

Examples

CREATE INDEX statement
Use the CREATE INDEX statement to speed searches in your database file. The format of the CREATE
INDEX statement is:

CREATE INDEX [index_name][ON] table_name.column_name

CREATE INDEX is supported for a single column (multi-column indexes are not supported). Indexes are
not allowed on columns that correspond to container field types, summary fields, fields that have the global
storage option, or unstored calculation fields in a FileMaker database file.

Creating an index for a text column automatically selects the Storage Option of Minimal in Indexing for the
corresponding field in the FileMaker database file. Creating an index for a non-text column (or a column
formatted as Japanese text) automatically selects the Storage Option of All in Indexing for the corresponding
field in the FileMaker database file.

Using Sample SQL

text column CREATE TABLE T1 (C1 VARCHAR, C2 VARCHAR (50), C3 VARCHAR (1001),
C4 VARCHAR (500276))

text column, NOT NULL CREATE TABLE T1NN (C1 VARCHAR NOT NULL, C2 VARCHAR (50) NOT NULL,
C3 VARCHAR (1001) NOT NULL, C4 VARCHAR (500276) NOT NULL)

numeric column CREATE TABLE T2 (C1 DECIMAL, C2 DECIMAL (10,0), C3 DECIMAL (7539,2),
C4 DECIMAL (497925,301))

date column CREATE TABLE T3 (C1 DATE, C2 DATE, C3 DATE, C4 DATE)

time column CREATE TABLE T4 (C1 TIME, C2 TIME, C3 TIME, C4 TIME)

timestamp column CREATE TABLE T5 (C1 TIMESTAMP, C2 TIMESTAMP, C3 TIMESTAMP, C4 TIMESTAMP)

BLOB column CREATE TABLE T6 (C1 BLOB, C2 BLOB, C3 BLOB, C4 BLOB)

To Sample SQL

add columns ALTER TABLE Salespeople ADD C1 VARCHAR

remove columns ALTER TABLE Salespeople DROP C1

32 FileMaker ODBC and JDBC Developer’s Guide
Creating an index for any column automatically selects the Storage Option of Automatically create indexes
as needed in Indexing for the corresponding field in the FileMaker database file.

Example
CREATE INDEX myIndex ON Salespeople.Salesperson_ID

DROP INDEX statement
Use the DROP INDEX statement to remove an index from a database file. The format of the DROP INDEX
statement is:

DROP INDEX [ON] table_name.column_name

Remove an index when your database file is too large, or you don’t often use a field in queries.

If your queries are experiencing poor performance, and you’re working with an extremely large FileMaker
database file with many indexed text fields, consider dropping the indexes from some fields. Also consider
dropping the indexes from fields that you rarely use in SELECT statements.

Dropping an index for any column automatically selects the Storage Option of None and clears Automatically
create indexes as needed in Indexing for the corresponding field in the FileMaker database file.

The PREVENT INDEX CREATION attribute is not supported.

Example
DROP INDEX ON Salespeople.Salesperson_ID

FROM clause
The FROM clause indicates the tables that will be used in the SELECT statement. The format is:

FROM table_names [table_alias]

table_names can be one or more simple table names in the current working directory or complete
pathnames.

table_alias can be used to give the table a more descriptive name, or to abbreviate a longer table name.

Field names can be prefixed with the table name or the table alias. For example, given the table specification
FROM employee E, you can refer to the LAST_NAME field as E.LAST_NAME. Table aliases must be
used if the SELECT statement joins a table to itself. For example:

SELECT * FROM employee E, employee F WHERE E.manager_id = F.employee_id

The equal sign (=) includes only matching rows in the results.

If you are joining more than one table, and you want to discard all rows that don’t have corresponding rows
in both source tables, you can use INNER JOIN. For example:

SELECT *
FROM Salespeople INNER JOIN Sales_Data
ON Salespeople.Salesperson_ID = Sales_Data.Salesperson_ID

Note OUTER JOIN is not currently supported.

Chapter 4 | Supported standards 33
WHERE clause
The WHERE clause specifies the conditions that records must meet to be retrieved. The WHERE clause
contains conditions in the form:

WHERE expr1 rel_operator expr2

expr1 and expr2 can be field names, constant values, or expressions.

rel_operator is the relational operator that links the two expressions. For example, the following
SELECT statement retrieves the names of employees who make $20,000 or more.

SELECT last_name,first_name FROM emp WHERE salary >= 20000

Note If you use fully qualified names in the SELECT (projection) list, you must also use fully qualified
names in the related WHERE clause.

GROUP BY clause
The GROUP BY clause specifies the names of one or more fields by which the returned values should be
grouped. This clause is used to return a set of aggregate values. It has the following format:

GROUP BY column_expressions

column_expressions must match the column expression used in the SELECT clause. A column
expression can be one or more field names of the database table separated by commas, or one or more
expressions separated by commas.

The following example sums the salaries in each department.

SELECT dept_id, sum(salary) FROM emp GROUP BY dept_id

This statement returns one row for each distinct department ID. Each row contains the department ID and
the sum of the salaries of the employees in the department.

HAVING clause
The HAVING clause enables you to specify conditions for groups of records (for example, display only the
departments that have salaries totaling more than $200,000). This clause is valid only if you have already
defined a GROUP BY clause. It has the following format:

HAVING expr1 rel_operator expr2

expr1 and expr2 can be field names, constant values, or expressions. These expressions do not have to
match a column expression in the SELECT clause.

rel_operator is the relational operator that links the two expressions. The following example returns
only the departments whose sums of salaries are greater than $200,000:

SELECT dept_id, sum(salary) FROM emp
GROUP BY dept_id HAVING sum(salary) > 200000

UNION operator
The UNION operator combines the results of two or more SELECT statements into a single result. The
single result is all of the returned records from the SELECT statements. By default, duplicate records are
not returned. To return duplicate records, use the ALL keyword (UNION ALL). The format is:

SELECT statement UNION [ALL] SELECT statement

34 FileMaker ODBC and JDBC Developer’s Guide
When using the UNION operator, the select lists for each SELECT statement must have the same number
of column expressions, with the same data types, and must be specified in the same order. For example:

SELECT last_name, salary, hire_date FROM emp UNION SELECT name, pay,
birth_date FROM person

This example has the same number of column expressions, and each column expression, in order, has the
same data type.

The following example is not valid because the data types of the column expressions are different (SALARY
from EMP has a different data type than LAST_NAME from RAISES). This example has the same number
of column expressions in each SELECT statement, but the expressions are not in the same order by data
type.

SELECT last_name, salary FROM emp UNION SELECT salary, last_name FROM
raises

ORDER BY clause
The ORDER BY clause indicates how the records are to be sorted. The format is:

ORDER BY {sort_expression [DESC | ASC]}, ...

sort_expression can be field names, expressions, or the positional number of the column expression to
use. The default is to perform an ascending (ASC) sort.

For example, to sort by last_name then by first_name, you could use either of the following SELECT
statements:

SELECT emp_id, last_name, first_name FROM emp ORDER BY last_name,
first_name

or

SELECT emp_id, last_name, first_name FROM emp ORDER BY 2,3

In the second example, last_name is the second column expression following SELECT, so ORDER BY 2
sorts by last_name.

FOR UPDATE clause
The FOR UPDATE clause locks the records of the database table selected by the SELECT statement. The
format is:

FOR UPDATE [OF column_expressions]

column_expressions is a list of field names in the database table that you intend to update, separated by
a comma. column_expressions is optional.

The following example returns all records in the employee database that have a SALARY field value of
more than $20,000. When each record is fetched, it is locked. If the record is updated or deleted, the lock is
held until you commit the change. Otherwise, the lock is released when you fetch the next record.

SELECT * FROM emp WHERE salary > 20000 FOR UPDATE OF last_name, first_name,
salary

Chapter 4 | Supported standards 35
SQL aggregate functions
Aggregate functions return a single value from a set of records. You can use an aggregate function as part
of a SELECT statement, with a field name (for example, AVG(SALARY)), or in combination with a column
expression (for example, AVG(SALARY * 1.07)).

You can precede the column expression with the DISTINCT operator to eliminate duplicate values. For
example:

COUNT (DISTINCT last_name)

In this example, only unique last name values are counted.

Important Use uppercase letters for SQL function names (some are case sensitive).

Examples
SELECT SUM (Sales_Data.Amount) AS agg FROM Sales_Data

SELECT AVG (Sales_Data.Amount) AS agg FROM Sales_Data

SELECT COUNT (Sales_Data.Amount) AS agg FROM Sales_Data

SELECT MAX (Sales_Data.Amount) AS agg FROM Sales_Data WHERE
Sales_Data.Amount < 3000

SELECT MIN (Sales_Data.Amount) AS agg FROM Sales_Data WHERE
Sales_Data.Amount < 3000

SQL expressions
Use expressions in WHERE, HAVING, and ORDER BY clauses of SELECT statements to form detailed
and sophisticated database queries.Valid expression elements are:

Aggregate function Returns

SUM The total of the values in a numeric field expression. For example, SUM(SALARY)
returns the sum of all salary field values.

AVG The average of the values in a numeric field expression. For example, AVG(SALARY)
returns the average of all salary field values.

COUNT The number of values in any field expression. For example, COUNT(NAME) returns the
number of name values. When using COUNT with a field name, COUNT returns the
number of non-null field values. A special example is COUNT(*), which returns the
number of records in the set, including records with null values.

MAX The maximum value in any field expression. For example, MAX(SALARY) returns the
maximum salary field value.

MIN The minimum value in any field expression. For example, MIN(SALARY) returns the
minimum salary field value.

Field names Numeric operators Relational operators

Constants and literals Character operators Logical operators

Exponential notation Date operators Functions

36 FileMaker ODBC and JDBC Developer’s Guide
Field names
The most common expression is a simple field name, such as calc or Sales_Data.Invoice_ID.

Constants and literals
Constants are values that do not change. For example, in the expression PRICE * 1.05, the value 1.05 is a
constant. Or you might assign a value of 30 to the constant Number_Of_Days_In_June.

A literal is another kind of constant; but instead of having an assigned value, the literal itself is the value,
such as 'Paris' or '14:35:10'. A literal is a “what you see is what you get” constant.

You must enclose character constants (such as literals) in pairs of single quotation marks ('). To include a
single quotation mark in a character constant enclosed by single quotation marks, use two single quotation
marks together (for example, 'Don''t').

You must enclose date, time, and timestamp constants in braces ({}), for example, {D '2005-06-05'},
{14:35:10}, and {TS '2005-06-05 14:35:10'}. The one exception: SQL-92 syntax requires ISO date and
time formats with no brackets:

1 DATE 'YYYY-MM-DD'

1 TIME 'HH:MM:SS'

1 TIMESTAMP 'YYYY-MM-DD HH:MM:SS'

When entering date and time values, match the format of the database file locale. For example, if the
database was created on an Italian language system, use Italian date and time formats.

Logical values that are characters must be enclosed in periods. The logical constants are .T. and 1 for True
and .F. and 0 for False. For portability, use 1 and 0.

Constant Acceptable syntax (examples)

Text 'Paris'

Number 1.05

Date DATE '2005-06-05'
{ D '2005-06-05' }
{ 06/05/2005 }
{ 06/05/05 }

Time TIME '14:35:10'
{ T '14:35:10' }
{14:35:10}

Timestamp TIMESTAMP '2005-06-05 14:35:10'
{ TS '2005-06-05 14:35:10'}
{ 06/05/2005 14:35:10 }
{2005-06-05 14:35:10}
{ 06/05/05 14:35:10 } Make sure Strict data type: 4-Digit Year Date is not selected as a
validation option in the FileMaker database file for a field using this 2-digit year syntax.

Chapter 4 | Supported standards 37
Exponential/scientific notation
You can include exponential notation.

Example
SELECT column1, 3.4E+7 FROM table1 WHERE calc < 3.4E-6 * column2

Numeric operators
You can include the following operators in number expressions: +, -, *, /, and ^ or ** (exponentiation).

You can precede numeric expressions with a unary plus (+) or minus (-).

Character operators
You can concatenate characters.

Examples

In the following examples, last_name is 'JONES ' and first_name is 'ROBERT ':

Date operators
You can modify dates.

Examples

In the following examples, hire_date is {01/30/2004}

Additional examples:

SELECT Date_Sold, Date_Sold + 30 AS agg FROM Sales_Data

SELECT Date_Sold, Date_Sold - 30 AS agg FROM Sales_Data

Operator Concatenation Example Result

+ Keep trailing blank characters first_name + last_name 'ROBERT JONES '

- Move trailing blank characters to the end first_name - last_name 'ROBERTJONES '

Operator Effect on date Example Result

+ Add a number of days to a date hire_date + 5 {02/04/2004}

- Find the number of days between two dates,
or subtract a number of days from a date

hire_date - {01/01/2004}

hire_date - 10

29

{01/20/2004}

38 FileMaker ODBC and JDBC Developer’s Guide
Relational operators

Examples
SELECT Sales_Data.Invoice_ID FROM Sales_Data
WHERE Sales_Data.Salesperson_ID = 'SP-1'

SELECT Sales_Data.Amount FROM Sales_Data WHERE Sales_Data.Invoice_ID <> 125

SELECT Sales_Data.Amount FROM Sales_Data WHERE Sales_Data.Amount > 3000

SELECT Sales_Data.Time_Sold FROM Sales_Data
WHERE Sales_Data.Time_Sold < '12:00:00'

SELECT Sales_Data.Company_Name FROM Sales_Data
WHERE Sales_Data.Company_Name LIKE '%University'

SELECT Sales_Data.Company_Name FROM Sales_Data
WHERE Sales_Data.Company_Name NOT LIKE '%University'

SELECT Sales_Data.Amount FROM Sales_Data WHERE Sales_Data.Amount IS NULL

SELECT Sales_Data.Amount FROM Sales_Data WHERE Sales_Data.Amount IS NOT
NULL

SELECT Sales_Data.Invoice_ID FROM Sales_Data
WHERE Sales_Data.Invoice_ID BETWEEN 1 AND 10

SELECT COUNT(Sales_Data.Invoice_ID) AS agg
FROM Sales_Data WHERE Sales_Data.INVOICE_ID IN (50,250,100)

Operator Meaning

= Equal

<> Not equal

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

LIKE Matching a pattern

NOT LIKE Not matching a pattern

IS NULL Equal to Null

IS NOT NULL Not equal to Null

BETWEEN Range of values between a lower and upper bound

IN A member of a set of specified values or a member of a subquery

NOT IN Not a member of a set of specified values or a member of a subquery

EXISTS ‘True’ if a subquery returned at least one record

ANY Compares a value to each value returned by a subquery (operator must be preceded by =,
<>, >, >=, <, or <=); =Any is equivalent to In

ALL Compares a value to each value returned by a subquery (operator must be preceded by =,
<>, >, >=, <, or <=)

Chapter 4 | Supported standards 39
SELECT COUNT(Sales_Data.Invoice_ID) AS agg
FROM Sales_Data WHERE Sales_Data.INVOICE_ID NOT IN (50,250,100)

SELECT COUNT(Sales_Data.Invoice_ID) AS agg FROM Sales_Data
WHERE Sales_Data.INVOICE_ID NOT IN (SELECT Sales_Data.Invoice_ID
FROM Sales_Data WHERE Sales_Data.Salesperson_ID = 'SP-4')

SELECT *
FROM Sales_Data WHERE EXISTS (SELECT Sales_Data.Amount
FROM Sales_Data WHERE Sales_Data.Salesperson_ID IS NOT NULL)

SELECT *
FROM Sales_Data WHERE Sales_Data.Amount = ANY (SELECT Sales_Data.Amount
FROM Sales_Data WHERE Sales_Data.Salesperson_ID = 'SP-1')

SELECT *
FROM Sales_Data WHERE Sales_Data.Amount = ALL (SELECT Sales_Data.Amount
FROM Sales_Data WHERE Sales_Data.Salesperson_ID IS NULL)

Logical operators
You can combine two or more conditions. The conditions must be related by AND or OR, such as:

salary = 40000 AND exempt = 1

The logical NOT operator is used to reverse the meaning, such as:

NOT (salary = 40000 AND exempt = 1)

Examples
SELECT * FROM Sales_Data WHERE Sales_Data.Company_Name
NOT LIKE '%University' AND Sales_Data.Amount > 3000

SELECT * FROM Sales_Data WHERE (Sales_Data.Company_Name
LIKE '%University' OR Sales_Data.Amount > 3000)
AND Sales_Data.Salesperson_ID = 'SP-1'

Functions
The ODBC and JDBC client drivers support many functions you can use in expressions. Some of the
functions return characters strings, some return numbers, and some return dates.

Important Use uppercase letters for SQL function names (some are case sensitive).

Functions that
return character
strings Description Example

CHR Converts an ASCII code to a one-
character string

CHR(67) returns C

RTRIM Removes trailing blanks from a string RTRIM('ABC ') returns ABC

TRIM Removes trailing blanks from a string TRIM('ABC ') returns ABC

LTRIM Removes leading blanks from a string LTRIM(' ABC') returns ABC

UPPER Changes each letter of a string to
uppercase

UPPER('Allen') returns ALLEN

LOWER Changes each letter of a string to
lowercase

LOWER('Allen') returns allen

40 FileMaker ODBC and JDBC Developer’s Guide
Examples
SELECT CHR(67) + SPACE(1) + CHR(70) FROM Salespeople

SELECT RTRIM(' ' + Salespeople.Salesperson_ID) AS agg FROM Salespeople
SELECT TRIM(SPACE(1) + Salespeople.Salesperson_ID) AS agg FROM Salespeople

SELECT LTRIM(' ' + Salespeople.Salesperson_ID) AS agg FROM Salespeople
SELECT UPPER(Salespeople.Salesperson) AS agg FROM Salespeople

SELECT LOWER(Salespeople.Salesperson) AS agg FROM Salespeople

SELECT LEFT(Salespeople.Salesperson, 5) AS agg FROM Salespeople

SELECT RIGHT(Salespeople.Salesperson, 7) AS agg FROM Salespeople

SELECT SUBSTR(Salespeople.Salesperson_ID, 2, 2) +
SUBSTR(Salespeople.Salesperson_ID, 4, 2) AS agg FROM Salespeople

SELECT SUBSTR(Salespeople.Salesperson_ID, 2) +
SUBSTR(Salespeople.Salesperson_ID, 4) AS agg FROM Salespeople

SELECT SPACE(2) + Salespeople.Salesperson_ID AS Salesperson_ID FROM
Salespeople

SELECT STRVAL('60506') AS agg FROM Sales_Data WHERE Sales_Data.Invoice_ID
= 1

SELECT TIME() AS agg FROM Sales_Data WHERE Sales_Data.Invoice_ID = 1

SELECT USERNAME() AS agg FROM Sales_Data WHERE Sales_Data.Invoice_ID = 1

LEFT Returns leftmost characters of a string LEFT('Mattson',3) returns Mat

RIGHT Returns rightmost characters of a string RIGHT('Mattson',4) returns tson

SUBSTR Returns a substring of a string, with
parameters of the string, the first character
to extract, and the number of characters to
extract (optional)

SUBSTR('Conrad',2,3) returns onr
SUBSTR('Conrad',2) returns onrad

SPACE Generates a string of blanks SPACE(5) returns ' '
STRVAL Converts a value of any type to a character

string
STRVAL('Woltman') returns Woltman
STRVAL(5 * 3) returns 15
STRVAL(4 = 5) returns 'False'
STRVAL({12/25/2004}) returns 12/25/2004

TIME Returns the time of day as a string At 9:49 PM, TIME() returns 21:49:00

USERNAME Returns the login ID specified at connect
time

Functions that
return numbers Description Example

MOD Divides two numbers and returns the
remainder of the division

MOD(10,3) returns 1

LEN Returns the length of a string LEN('ABC') returns 3

Functions that
return character
strings Description Example

Chapter 4 | Supported standards 41
Operator precedence
As expressions become more complex, the order in which the expressions are evaluated becomes important.
This table shows the order in which the operators are evaluated. The operators in the first line are evaluated
first, and so on. Operators in the same line are evaluated left to right in the expression.

MONTH Returns the month part of a date MONTH({01/30/2004}) returns 1

DAY Returns the day part of a date DAY({01/30/2004}) returns 30

YEAR Returns the year part of a date YEAR({01/30/2004}) returns 2004

MAX Returns the larger of two numbers MAX(66,89) returns 89

DAYOFWEEK Returns the day of week (1-7) of a date
expression

DAYOFWEEK({05/01/2004}) returns 7

MIN Returns the smaller of two numbers MIN(66,89) returns 66

POW Raises a number to a power POW(7,2) returns 49

INT Returns the integer part of a number INT(6.4321) returns 6

X Returns the decimal equivalent of a
hexadecimal number

X'b9' returns 185

B Returns the decimal equivalent of a binary
number

B'1001' returns 9

ROUND Rounds a number ROUND(123.456,0) returns 123
ROUND(123.456,2) returns 123.46
ROUND(123.456,-2) returns 100

NUMVAL Converts a character string to a number; if
the character string is not a valid number,
returns 0

NUMVAL('123') returns 123

VAL Converts a character string to a number; if
the character string is not a valid number,
returns 0

VAL('123') returns 123

Functions that
return dates Description Example

DATE Returns today’s date If today is 11/21/2005, DATE() returns {2005-11-21}

DATEVAL Converts a character string to a date DATEVAL('01/30/2006') returns {2006-01-30}

Precedence Operator

1 Unary '-', Unary '+'

2 ^, **

3 *, /

4 +, -

5 =, <>, <, <=, >, >=, Like, Not Like, Is Null, Is Not Null, Between, In, Exists, Any, All

Functions that
return numbers Description Example

42 FileMaker ODBC and JDBC Developer’s Guide
The following example shows the importance of precedence:

WHERE salary > 40000 OR hire_date > {01/30/2004} AND dept = 'D101'

Because AND is evaluated first, this query retrieves employees in department D101 hired after January 30,
2004, as well as every employee making more than $40,000, no matter what department or hire date.

To force the clause to be evaluated in a different order, use parentheses to enclose the conditions to be
evaluated first. For example:

WHERE (salary > 40000 OR hire_date > {01/30/1989}) AND dept = 'D101'

retrieves employees in department D101 that either make more than $40,000 or were hired after January 30,
2004.

ODBC Catalog functions
The ODBC client driver supports the following Catalog functions:

1 SQLTables - catalog information is stored and reported as single part names (table name only).

1 SQLColumns

1 SQLColumnPrivileges

1 SQLDescribeCol

1 SQLGetTypeInfo

JDBC Meta Data functions
The JDBC client driver supports the following Meta Data functions:

1 getColumns

1 getColumnPrivileges

1 getMetaData

1 getTypeInfo

1 getTables

1 getTableTypes

For JDBC, query Meta Data with the dmd.getFunction command in Java.

6 Not

7 AND

8 OR

Precedence Operator

Appendix A
Mapping FileMaker fields to ODBC data types

This table illustrates how FileMaker field types map to the standard ODBC data types.

String length is optional in table declarations. All strings will be stored and retrieved in Unicode.

Notes

1 You can SELECT up to 170 fields at one time from a FileMaker database file; you can UPDATE up to
100 fields at one time.

1 FileMaker supports repeating fields (array data types), but ODBC does not. FileMaker exports
repetitions to tab-delimited or comma-delimited files and separates each repetition with a group separator
(Unicode decimal value 29). Text columns separated with the group separator will be concatenated. All
other data types will return only the first repetition.

FileMaker field type Converts to ODBC data type About the data type

text SQL_VARCHAR The maximum column length of text is 1 million
characters, unless you specify a smaller Maximum
number of characters for the text field in FileMaker.
FileMaker returns empty strings as NULL.

number SQL_DOUBLE The FileMaker number field type can contain positive or
negatives values as small as 10-308, and as large as
10+308, with up to 15 significant digits.

date SQL_DATE

time SQL_TIME The FileMaker time field type can contain the time of
day or a time interval. A time interval will be returned as
a time of day, unless it is less than 0 or greater than 24
hours (both return a value of 0).

timestamp SQL_TIMESTAMP

container (BLOB) SQL_LONGVARBINARY You can retrieve binary data, file reference information,
or data of a specific file type from a container field.

Within a SELECT statement, use the CAST function to
retrieve file reference information, and use the GetAs
function to retrieve data of a specific file type.

calculation The result is mapped to the corresponding ODBC data
type.

44 FileMaker ODBC and JDBC Developer’s Guide

Appendix B
Mapping FileMaker fields to JDBC data types

The JDBC client driver uses the following mappings when converting FileMaker data types to JDBC SQL
types. (For information about these types, see the JDK 1.4 documentation web pages at www.javasoft.com.)

The JDBC client driver converts the FileMaker calculation data type to the JDBC SQL type matching the
calculation’s result. For example, the JDBC client driver converts a FileMaker calculation that results in a
timestamp data type to java.sql.Types.TIMESTAMP.

FileMaker field type Converts to JDBC SQL type

text java.sql.Types.VARCHAR

number java.sql.Types.DOUBLE

date java.sql.Types.DATE

time java.sql.Types.TIME

timestamp java.sql.Types.TIMESTAMP

container java.sql.Types.BLOB

calculation specified by the data type of the calculation’s result

46 FileMaker ODBC and JDBC Developer’s Guide

Appendix C
ODBC and JDBC error messages

Here are the basic formats of error messages you receive when working with FileMaker and ODBC/JDBC.
For a listing of error numbers and explanations, see www.datadirect.com.

For more information about working with errors in FileMaker, see the Get(LastError) or
Get(LastODBCError) functions described in FileMaker Pro Help.

ODBC error messages
Error messages can come from:

1 ODBC driver errors

1 ODBC Driver Manager errors

1 SequeLink Client errors

1 SequeLink Server errors

1 the data source or database management system

ODBC driver error messages
An error reported by the SequeLink ODBC driver has the following format:

[DataDirect] [ODBC SequeLink driver] message

For example:

[DataDirect] [ODBC SequeLink driver] Invalid precision specified

If you get this type of error, check the last ODBC call your application made for possible problems or
contact your ODBC application vendor.

ODBC Driver Manager error messages
An error reported by the ODBC Driver Manager has the following format:

[Microsoft] [ODBC Driver Manager] message

For example:

[Microsoft] [ODBC Driver Manager] Function sequence error

If you get this type of error, check to see that you have the proper ODBC support files and drivers.

SequeLink Client error messages
An error reported by the SequeLink ODBC Client has the following format:

[DataDirect] [ODBC SequeLink driver] [SequeLink Client] message

For example:

[DataDirect] [ODBC SequeLink driver] [SequeLink Client] The specified transliteration module is not found

48 FileMaker ODBC and JDBC Developer’s Guide
SequeLink Server error messages
An error reported by the SequeLink Server has the following format:

[DataDirect] [ODBC SequeLink driver] [SequeLink Server] message

For example:

[DataDirect] [ODBC SequeLink driver] [SequeLink Server] Only SELECT statements are allowed in this read-only
connection.

Data source error messages
An error that occurs in the data source includes the data source name, in the following format:

[DataDirect] [ODBC SequeLink driver] [data_source] message

For example, you might get the following message from your FileMaker data source:

[DataDirect] [ODBC SequeLink driver] [FileMaker] Invalid Username/Password

If you get this type of error, you did something incorrectly with the database system. Check your FileMaker
documentation for more information or consult your database administrator.

Consecutive messages for errors in different columns can sometimes display an incorrect column name.

JDBC error messages
The SequeLink for JDBC driver reports errors to the calling application by returning SQLExceptions. Error
messages can come from:

1 JDBC driver errors

1 SequeLink Server errors

1 the data source or database management system

JDBC driver error messages
An error reported by the JDBC driver has the following format:

[DataDirect] [SequeLink JDBC Driver] message

For example:

[DataDirect] [SequeLink JDBC Driver] Timeout expired

If you get this type of error, check the last JDBC call your application made for possible problems or contact
your JDBC application vendor.

SequeLink Server error messages
An error reported by SequeLink Server has the following format:

[DataDirect] [SequeLink JDBC Driver] [SequeLink] message

If no SequeLink Server errors exist, you see:

[DataDirect] [JDBC SequeLink driver] [SequeLink]

Appendix C | ODBC and JDBC error messages 49
Data source error messages
An error that occurs in the data source includes the data source name, in the following format:

[DataDirect] [SequeLink JDBC Driver] [data_source] message

For example, you might get the following message from your FileMaker data source:

[DataDirect] [SequeLink JDBC Driver] [FileMaker] Invalid Username/Password

If you get this type of error, you did something incorrectly with the database system. Check your FileMaker
documentation for more information or consult your database administrator.

50 FileMaker ODBC and JDBC Developer’s Guide

Index
A

aggregate functions in SQL 35

ALTER TABLE (SQL statement) 31

B

blank space in database name 17, 22

C

CAST function 28, 43

catalog functions for ODBC 42

character operators in SQL expressions 37

client application, using FileMaker 9

configuring a FileMaker data source
via JDBC 22
via ODBC (Mac OS) 16
via ODBC (Windows) 13

constants in SQL expressions 36

container field 27

CREATE INDEX (SQL statement) 31

CREATE TABLE (SQL statement) 30

D

data source
configuring for access via JDBC 22
configuring for access via ODBC (Mac OS) 16
configuring for access via ODBC (Windows) 13
disabling a shared FileMaker database file 8
one DSN for each FileMaker database file 10
using a FileMaker database file 8
verifying access via JDBC 23
verifying access via ODBC (Mac OS) 17
verifying access via ODBC (Windows) 15

Data Source Name 14

data type mapping
JDBC client driver 45
ODBC client driver 43

date operators in SQL expressions 37

DELETE (SQL statement) 28

disabling a shared FileMaker database file 8

driver properties
JDBC client driver 22
ODBC client driver (Mac OS) 16
ODBC client driver (Windows) 13

DROP INDEX (SQL statement) 32
E

escape character 17, 22

exponential notation in SQL expressions 37

expressions in SQL 35

F

field names in SQL expressions 36

FOR UPDATE (SQL clause) 34

FROM (SQL clause) 32

functions in SQL expressions 39

G

GetAs function 28, 43

GROUP BY (SQL clause) 33

H

HAVING (SQL clause) 33

hosting a FileMaker data source 8

I

INNER JOIN 32

INSERT (SQL statement) 29

J

Java Development Kit (JDK) 20

JDBC client driver
driver class and main entry point 20
installing 20
mapping data types 45
meta data functions 42
registering with the JDBC driver manager 20
repeating fields 25
specifying the JDBC URL 20
Unicode support 25
verifying access 23

JDBC, described 19

join 32

L

literals in SQL expressions 36

Local Data Access Companion (LDAC) 9

logical operators in SQL expressions 39

52 FileMaker ODBC and JDBC Developer’s Guide
M

mapping data types
JDBC client driver 45
ODBC client driver 43

meta data functions for JDBC 42

Microsoft Access client application 9

Microsoft Query Wizard 9

Microsoft SQL Server 9

N

network requirements 9

numeric operators in SQL expressions 37

O

ODBC
described 11
repeating fields 43

ODBC client driver
catalog functions 42
installing (Mac OS) 15
installing (Windows) 13
mapping data types 43
maximum number of FileMaker fields 43
repeating fields 25
Unicode support 25
verifying access (Mac OS) 17
verifying access (Windows) 15

operating systems 8

operator precedence in SQL expressions 41

ORDER BY (SQL clause) 34

OUTER JOIN 32

R

Rapid Application Development (RAD) tools 19

registering the JDBC client driver 20

relational operators in SQL expressions 38

Remote Data Access Companion (RDAC) 9

repeating fields 25, 43

S

scientific notation in SQL expressions 37

Secure Socket Layer encryption 23

SELECT (SQL statement) 25

SequeLink Server Host 14

SequeLink Server Port 14

Server Data Source 14

sharing a FileMaker data source 8
space in database name 17, 22

SQL aggregate functions 35

SQL expressions 35
character operators 37
constants 36
date operators 37
exponential or scientific notation 37
field names 36
functions 39
literals 36
logical operators 39
numeric operators 37
operator precedence 41
relational operators 38

SQL statements
ALTER TABLE 31
CREATE INDEX 31
CREATE TABLE 30
DELETE 28
DROP INDEX 32
INSERT 29
SELECT 25
supported by client drivers 25
UPDATE 30

SQL-92 conformance 25

T

testing access
JDBC client driver 23
ODBC client driver (Mac OS) 17
ODBC client driver (Windows) 15

U

Unicode support 25

UNION (SQL operator) 33

UPDATE (SQL statement) 30

URL (Uniform Resource Locator) for the JDBC
client driver 20

V

verifying access
JDBC client driver 23
ODBC client driver (Mac OS) 17
ODBC client driver (Windows) 15

W

WHERE (SQL clause) 33

	Chapter 1 Introduction
	About this guide
	Using ODBC and JDBC with FileMaker
	Using a FileMaker database file as a data source
	Networking requirements
	Using FileMaker Pro as a client application

	Updating files from previous versions
	If you previously shared a FileMaker database file as a data source
	If you previously used FileMaker Pro as a client to access a data source

	Chapter 2 Using ODBC to share FileMaker data
	About ODBC
	Using the ODBC client driver
	Accessing a FileMaker database file - overview
	Accessing a FileMaker database file from a Windows application
	Installing the ODBC client driver (Windows)
	Specifying ODBC client driver properties for a FileMaker DSN (Windows)
	Verifying access via ODBC (Windows)

	Accessing a FileMaker database file from a Mac OS application
	Installing the ODBC client driver (Mac OS)
	Configuring the ODBC client driver (Mac OS)
	Specifying ODBC client driver properties for a FileMaker DSN (Mac OS)
	Verifying access via ODBC (Mac OS)

	Chapter 3 Using JDBC to share FileMaker data
	About JDBC
	Using the JDBC client driver
	Installing the JDBC client driver
	About the JDBC client driver
	Using a JDBC URL to connect to your database
	Specifying driver properties in the URL subname

	Verifying access via JDBC

	Chapter 4 Supported standards
	Support for Unicode characters
	SQL statements and clauses
	SELECT statement
	DELETE statement
	INSERT statement
	UPDATE statement
	CREATE TABLE statement
	ALTER TABLE statement
	CREATE INDEX statement
	DROP INDEX statement
	FROM clause
	WHERE clause
	GROUP BY clause
	HAVING clause
	UNION operator
	ORDER BY clause
	FOR UPDATE clause

	SQL aggregate functions
	SQL expressions
	Field names
	Constants and literals
	Exponential/scientific notation
	Numeric operators
	Character operators
	Date operators
	Relational operators
	Logical operators
	Functions
	Operator precedence

	ODBC Catalog functions
	JDBC Meta Data functions

	Appendix A Mapping FileMaker fields to ODBC data types
	Appendix B Mapping FileMaker fields to JDBC data types
	Appendix C ODBC and JDBC error messages
	ODBC error messages
	ODBC driver error messages
	ODBC Driver Manager error messages
	SequeLink Client error messages
	SequeLink Server error messages
	Data source error messages

	JDBC error messages
	JDBC driver error messages
	SequeLink Server error messages
	Data source error messages

	Index

