
FileMaker® Server 12
Custom Web Publishing with XML

© 2007–2012 FileMaker, Inc. All Rights Reserved.
FileMaker, Inc.
5201 Patrick Henry Drive
Santa Clara, California 95054
FileMaker and Bento are trademarks of FileMaker, Inc. registered in the U.S. and other countries. The file folder logo
and the Bento logo are trademarks of FileMaker, Inc. All other trademarks are the property of their respective owners.
FileMaker documentation is copyrighted. You are not authorized to make additional copies or distribute this
documentation without written permission from FileMaker. You may use this documentation solely with a valid licensed
copy of FileMaker software.
All persons, companies, email addresses, and URLs listed in the examples are purely fictitious and any resemblance to
existing persons, companies, email addresses, or URLs is purely coincidental. Credits are listed in the
Acknowledgements documents provided with this software. Mention of third-party products and URLs is for
informational purposes only and constitutes neither an endorsement nor a recommendation. FileMaker, Inc. assumes
no responsibility with regard to the performance of these products.
For more information, visit our website at http://www.filemaker.com.
Edition: 01

Contents

Preface 6
About this guide 6

Chapter 1
Introducing Custom Web Publishing 7

About the Web Publishing Engine 8
How a Web Publishing Engine request is processed 8

Custom Web Publishing with PHP 9
Custom Web Publishing with XML 9
Comparing PHP to XML 9

Reasons to choose PHP 9
Reasons to choose XML 9

Chapter 2
About Custom Web Publishing with XML 10

Creating dynamic websites with the Web Publishing Engine 10
Key features in Custom Web Publishing with XML 10
Web publishing requirements 11

What is required to publish a database using Custom Web Publishing 11
What web users need to access a Custom Web Publishing solution 11
Connecting to the Internet or an intranet 11

Where to go from here 12

Chapter 3
Preparing databases for Custom Web Publishing 13

Enabling Custom Web Publishing in a database 13
Accessing a protected database 13
Protecting your published databases 14
Web server support for Internet media types (MIME) 15
About publishing the contents of container fields on the web 15

Container field objects embedded in a database 15
Container fields with referenced files 15
Container fields with externally stored data 16
How web users view container field data 17

FileMaker scripts and Custom Web Publishing 17
Script tips and considerations 17
Script behavior in Custom Web Publishing solutions 18
Script triggers and Custom Web Publishing solutions 19

Chapter 4
Accessing XML data with the Web Publishing Engine 20

Using Custom Web Publishing with XML 20
Differences between the Web Publishing Engine and FileMaker Pro XML Import/Export 20
How the Web Publishing Engine generates XML data from a request 21

General process for accessing XML data from the Web Publishing Engine 22

4

About the URL syntax for XML data and container objects 22
About the URL syntax for XML data 22
About the URL syntax for FileMaker container objects in XML solutions 23
About URL text encoding 24

Accessing XML data via the Web Publishing Engine 24
About namespaces for FileMaker XML 25
About FileMaker database error codes 25
Retrieving the document type definitions for the FileMaker grammars 25

Using the fmresultset grammar 26
Description of elements in the fmresultset grammar 26
Example of XML data in the fmresultset grammar 28

Using other FileMaker XML grammars 29
Description of elements in the FMPXMLRESULT grammar 29
Example of XML data in the FMPXMLRESULT grammar 30
Description of elements in the FMPXMLLAYOUT grammar 31
Example of XML data in the FMPXMLLAYOUT grammar 33

About UTF-8 encoded data 34
Using FileMaker query strings to request XML data 34
Switching layouts for an XML response 36
Understanding how an XML request is processed 36
Troubleshooting XML document access 37

Chapter 5
Staging, testing, and monitoring a site 38

Staging a Custom Web Publishing site 38
Testing a Custom Web Publishing site 39
Examples of stylesheets for testing XML output 39
Monitoring your site 40

Using the web server access and error logs 40
Using the Web Publishing Engine log 40
Using the Web Server Module error log 42
Using the Tomcat logs 42

Appendix A
Valid names used in query strings 43

About the query commands and parameters 43
Guidelines for using query commands and parameters 43
Query command parsing 44
About the syntax for a fully qualified field name 45
Using query commands with portal fields 46
About the syntax for specifying a global field 47

Query command reference 48
–dbnames (Database names) query command 48
–delete (Delete record) query command 48
–dup (Duplicate record) query command 48
–edit (Edit record) query command 48
–find, –findall, or –findany (Find records) query commands 49
–findquery (Compound find) query command 49

5

–layoutnames (Layout names) query command 50
–new (New record) query command 50
–scriptnames (Script names) query command 50
–view (View layout information) query command 51

Query parameter reference 51
–db (Database name) query parameter 51
–delete.related (Portal records delete) query parameter 51
–field (Container field name) query parameter 52
fieldname (Non-container field name) query parameter 52
fieldname.op (Comparison operator) query parameter 53
–lay (Layout) query parameter 54
–lay.response (Switch layout for response) query parameter 54
–lop (Logical operator) query parameter 54
–max (Maximum records) query parameter 54
–modid (Modification ID) query parameter 55
–query (Compound find request) query parameter 55
–recid (Record ID) query parameter 56
–relatedsets.filter (Filter portal records) query parameter 57
–relatedsets.max (Limit portal records) query parameter 57
–script (Script) query parameter 58
–script.param (Pass parameter to Script) query parameter 58
–script.prefind (Script before Find) query parameter 58
–script.prefind.param (Pass parameter to Script before Find) query parameter 59
–script.presort (Script before Sort) query parameter 59
–script.presort.param (Pass parameter to Script before Sort) query parameter 59
–skip (Skip records) query parameter 60
–sortfield (Sort field) query parameter 60
–sortorder (Sort order) query parameter 61

Appendix B
Error codes for Custom Web Publishing 62

Error code numbers in XML format 62
Error code numbers for FileMaker databases 62

Appendix C
XML query changes in FileMaker 12 70

XML query changes in syntax 70
XML query changes in semantics 70

Differences in query parsing 70
Differences in query processing 71
Differences in error codes returned 71

Index 72

Preface

About this guide
This guide assumes you are experienced with XML, developing websites, and using
FileMaker® Pro to create databases. You should understand the basics of FileMaker Pro database
design, and should understand the concepts of fields, relationships, layouts, portals, and
containers. This guide provides the following information about Custom Web Publishing with XML
on FileMaker Server:
1 what is required to develop a Custom Web Publishing solution using XML
1 how to publish your databases using XML
1 what web users need to access a Custom Web Publishing solution
1 how to obtain XML data from databases hosted by FileMaker Server

Important You can download PDFs of FileMaker documentation from
http://www.filemaker.com/documentation. Any updates to this document are also available from
the website.

The documentation for FileMaker Server includes the following information:

For information about See
Installing and configuring FileMaker Server FileMaker Server Getting Started Guide

FileMaker Server Help

Instant Web Publishing FileMaker Instant Web Publishing Guide

Custom Web Publishing with PHP FileMaker Server Custom Web Publishing with PHP

Custom Web Publishing with XML FileMaker Server Custom Web Publishing with XML (this book)

Installing and configuring ODBC and JDBC
drivers, and using ODBJ and JDBC

FileMaker ODBC and JDBC Guide

Chapter 1
Introducing Custom Web Publishing
With FileMaker Server, you can publish your FileMaker database on the Internet or an intranet in
these ways.
Instant Web Publishing: With Instant Web Publishing, you can quickly and easily publish your
database on the web. You don’t need to modify your database files or install additional
software—with compatible web browser software and access to the internet or an intranet, web
users can connect to your database to view, edit, sort, or search records, if you give them access
privileges.
With Instant Web Publishing, the host computer must be running FileMaker Pro, FileMaker Pro
Advanced, or FileMaker Server Advanced. The user interface resembles the desktop FileMaker
Pro application. The web pages and forms that the web user interacts with are dependent on the
layouts and views defined in the FileMaker Pro database. For more information, see FileMaker
Instant Web Publishing Guide.
Static publishing: If your data rarely changes, or if you don’t want users to have a live connection
to your database, you can use static publishing. With static publishing, you export data from a
FileMaker Pro database to create a web page that you can further customize with HTML. The web
page doesn’t change when information in your database changes, and users don’t connect to your
database. (With Instant Web Publishing, data is updated in a web browser window each time the
browser sends a request to FileMaker Server.) For more information, see FileMaker Instant Web
Publishing Guide.
Custom Web Publishing: For more control over the appearance and functionality of your
published database, use the Custom Web Publishing technologies available with FileMaker
Server. FileMaker Server, which hosts the published databases, does not require FileMaker Pro
to be installed or running for Custom Web Publishing to be available.
With Custom Web Publishing, you can:
1 Integrate your database with another website
1 Determine how users interact with data
1 Control how data displays in web browsers

FileMaker Server provides two Custom Web Publishing technologies:
1 Custom Web Publishing with PHP: Use the FileMaker API for PHP, which provides an object-

oriented PHP interface to FileMaker Pro databases, to integrate your FileMaker data into a PHP
web application. Because you code the PHP web pages yourself, you have complete control
over the user interface and how the user interacts with the data.

1 Custom Web Publishing with XML: Use XML data publishing to exchange FileMaker data with
other websites and applications. By using HTTP URL requests with FileMaker query
commands and parameters, you can query a database hosted by FileMaker Server, download
the resulting data in XML format, and use the resulting XML data in whatever way you want.

Chapter 1 | Introducing Custom Web Publishing 8
About the Web Publishing Engine

To support Instant Web Publishing and Custom Web Publishing, FileMaker Server uses a set of
software components called the FileMaker Server Web Publishing Engine. The Web Publishing
Engine handles interactions between a web user’s browser, your web server, and
FileMaker Server.
Custom Web Publishing with XML: Web users access your Custom Web Publishing solution by
clicking an HREF link or by entering a Uniform Resource Locator (URL) that specifies the web
server address and a FileMaker query string request. The Web Publishing Engine returns the XML
data specified in the query string request.
Custom Web Publishing with PHP: When a web user accesses your Custom Web Publishing
solution, PHP on FileMaker Server connects with the Web Publishing Engine and responds
through the FileMaker API for PHP.

How a Web Publishing Engine request is processed

1. A request is sent from a web browser or application to the web server.

2. The web server routes the request through FileMaker’s Web Server Module to the Web
Publishing Engine.

3. The Web Publishing Engine requests data from the database hosted by the Database Server.

4. The FileMaker Server sends the requested FileMaker data to the Web Publishing Engine.

5. The Web Publishing Engine converts the FileMaker data to respond to the request.
1 For PHP requests, the Web Publishing Engine responds to the API request.
1 For XML requests, the Web Publishing Engine sends XML data directly to the web server.

6. The web server sends the output to the requesting web browser or program.

Important Security is important when you publish data on the web. Review the security
guidelines in FileMaker Pro User’s Guide, available as a PDF file from
http://www.filemaker.com/documentation.

Web
Browser

Customers.fmp12

Database
Server

Products.fmp12

Using the FileMaker Server Web Publishing Engine for Custom Web Publishing

Web Server

Web Server Module

2 3

56 4

1

FM API and PHP code

Web Publishing Engine

Web Publishing Core

Chapter 1 | Introducing Custom Web Publishing 9
Custom Web Publishing with PHP

The FileMaker API for PHP provides an object-oriented PHP interface to FileMaker databases. The
FileMaker API for PHP enables both data and logic stored in a FileMaker Pro database to be accessed
and published on the web, or exported to other applications. The API also supports complex and
compound find commands for extracting and filtering data stored in FileMaker Pro databases.
Originally designed as a procedural programming language, PHP has been enhanced as an object-
oriented web development language. PHP provides programming language functionality for constructing
virtually any type of logic within a site page. For example, you can use conditional logic constructs to
control page generation, data routing, or workflow. PHP also provides for site administration and security.
Custom Web Publishing with XML

FileMaker Custom Web Publishing with XML enables you to send query requests to a FileMaker
Pro database hosted by FileMaker Server, and display, modify, or manipulate the resulting data.
Using an HTTP request with the appropriate query commands and parameters, you can retrieve
FileMaker data as an XML document. You can then export the XML data to other applications.
Comparing PHP to XML

The following sections provide some guidelines for determining the best solution for your site.

Reasons to choose PHP
1 PHP is a more powerful, object-oriented procedural scripting language, but is relatively easy to

learn. There are many resources available for training, development, and support.
1 The FileMaker API for PHP enables data and logic stored in a FileMaker Pro database to be

accessed and published on the web, or exported to other applications.
1 PHP lets you use conditional logic to control page construction or flow.
1 PHP provides programming language functionality for constructing many types of logic on a site

page.
1 PHP is one of the most popular web scripting languages.
1 PHP is an open source language, available at http://php.net.
1 PHP enables access to a wide variety of third-party components that you can integrate into your

solutions.

Note For more information about Custom Web Publishing with PHP, see FileMaker Server
Custom Web Publishing with PHP.

Reasons to choose XML
1 FileMaker XML request parameter syntax is designed for database interaction, simplifying

solution development.
1 XML is a W3C standard.
1 XML is a machine and human readable format that supports Unicode, enabling data to be

communicated in any written language.
1 XML is well-suited for presenting records, lists and tree-structured data.
1 You can use FMPXMLRESULT for accessing XML data using Custom Web Publishing and for

XML export from FileMaker Pro databases.

Chapter 2
About Custom Web Publishing with XML

Creating dynamic websites with the Web Publishing Engine

The Web Publishing Engine provides Custom Web Publishing for FileMaker Server using XML
data publishing. Custom Web Publishing provides several benefits:
1 Customization: You can determine how web users interact with FileMaker data, and how the

data displays in web browsers.
1 Data interchange: By using FileMaker XML, you can exchange FileMaker data with other

websites and applications.
1 Data integration: You can integrate FileMaker data into other websites, with other middleware,

and with custom applications. You can make the data look like it belongs to another website
instead of displaying an entire FileMaker layout in the web browser.

1 Security: The FileMaker Server administrator can individually enable or disable Instant Web
Publishing or XML web publishing for all databases hosted by the server. As the FileMaker
database owner, you can control web user access to Instant Web Publishing or XML web
publishing for each database.

1 Control and filtering of published data: You can control and filter the data and the type of
database information you want to publish, which prevents unauthorized use of the database.
You can also hide metadata, such as database and field names.

1 Based on an open standard: You have more access to tools, resources and skilled personnel
for Custom Web Publishing solutions. If you know standard XML, then you can start developing
solutions after learning a few unique details about Custom Web Publishing with XML, such as
the URL syntax and query parameters to use.

Custom Web Publishing with XML allows you to retrieve data from FileMaker databases, and
easily use the data in other output formats. By using an HTTP request with the appropriate query
commands and parameters, you can retrieve FileMaker data as an XML document. You can then
use the XML data in other applications. See “Accessing XML data via the Web Publishing Engine”
on page 24.
Key features in Custom Web Publishing with XML

FileMaker Server Custom Web Publishing with XML provides several important features:
1 Databases are hosted on FileMaker Server, and FileMaker Pro is not required to be running.
1 You can use server-side processing of the XML using JavaScript.
1 Like FileMaker Pro, access to data, layouts, and fields is based on the user account settings

defined in the database’s access privileges. The Web Publishing Engine also supports several
other security enhancements. See “Protecting your published databases” on page 14.

1 Web users can perform complex, multi-step scripts. FileMaker supports about 65 script steps
in Custom Web Publishing. See the section “FileMaker scripts and Custom Web Publishing” on
page 17.

Chapter 2 | About Custom Web Publishing with XML 11
1 You can pass a parameter value to a FileMaker script. For more information, see “–script.param
(Pass parameter to Script) query parameter” on page 58, “–script.prefind.param (Pass
parameter to Script before Find) query parameter” on page 59, and “–script.presort.param
(Pass parameter to Script before Sort) query parameter” on page 59.

1 The fmresultset XML grammar enables you to access fields by name and manipulate
relatedset (portal) data.

1 To access data in a database, you must specify a layout. See appendix A, “Valid names used
in query strings.”
Web publishing requirements
What is required to publish a database using Custom Web Publishing
To publish databases using Custom Web Publishing with XML, you need:
1 a FileMaker Server deployment that includes

1 a web server, either Microsoft IIS (Windows) or Apache (Mac OS X)
1 the FileMaker Database Server, enabled for Custom Web Publishing
1 the Web Publishing Engine, installed and configured

1 one or more FileMaker Pro databases hosted by FileMaker Server
1 the IP address or domain name of the host running the web server
1 a web browser and access to the web server to develop and test your Custom Web Publishing

solution
For more information, see FileMaker Server Getting Started Guide.

What web users need to access a Custom Web Publishing solution
To access a Custom Web Publishing solution that uses XML, web users need:
1 a web browser
1 access to the Internet or an intranet and the web server
1 the IP address or domain name of the host running the web server
If the database is password-protected, web users must also enter a user name and password for
a database account.

Connecting to the Internet or an intranet
When you publish databases on the Internet or an intranet, the host computer must be running
FileMaker Server, and the databases you want to share must be hosted and available. In addition:
1 Publish your database on a computer with a full-time Internet or intranet connection. You can

publish databases without a full-time connection, but they are only available to web users when
your computer is connected to the Internet or an intranet.

Chapter 2 | About Custom Web Publishing with XML 12
1 The host computer for the web server that is part of the FileMaker Server deployment must
have a dedicated static (permanent) IP address or a domain name. If you connect to the
Internet with an Internet service provider (ISP), your IP address might be dynamically allocated
(it is different each time you connect). A dynamic IP address makes it more difficult for web
users to locate your databases. If you are not sure of the type of access available to you, consult
your ISP or network administrator.
Where to go from here

Here are some suggestions to get started developing Custom Web Publishing solutions:
1 If you haven’t already done so, use FileMaker Server Admin Console to enable Custom Web

Publishing. See FileMaker Server Help and FileMaker Server Getting Started Guide.
1 In FileMaker Pro, open each FileMaker database that you want to publish and make sure the

database has the appropriate extended privilege(s) enabled for Custom Web Publishing. See
“Enabling Custom Web Publishing in a database” on page 13.

1 To learn how to access data in FileMaker databases using XML, see “Accessing XML data via
the Web Publishing Engine” on page 24.

Chapter 3
Preparing databases for Custom Web
Publishing
Before you can use Custom Web Publishing with a database, you must prepare the database and
protect it from unauthorized access.
Enabling Custom Web Publishing in a database

You must enable Custom Web Publishing with XML in each database you want to publish. If you
don’t enable Custom Web Publishing with XML in the database, web users won’t be able to use
Custom Web Publishing to access the database even if it is hosted by FileMaker Server that is
configured to support a Web Publishing Engine.

To enable Custom Web Publishing for a database:

1. In FileMaker Pro, open the database you want to publish using an account that has the Full
Access privilege set. Alternatively, you can open the database using an account that has the
Manage Extended Privileges access privileges.

2. Assign the Custom Web Publishing with XML extended privilege by using this keyword: fmxml

3. Assign the privilege set(s) that include the Custom Web Publishing with XML extended privilege
to one or more accounts, or to the Admin or Guest account.

Note When defining account names and passwords for Custom Web Publishing solutions, use
printable ASCII characters, for example a-z, A-Z, and 0-9. For more secure account names and
passwords, include punctuation characters such as “!” and “%,” but do not include colons. For
information on setting up accounts, see FileMaker Pro Help.
Accessing a protected database

When using a Custom Web Publishing solution to access a database, web users may be
prompted for their account information. If the Guest account for the database is disabled or does
not have a privilege set enabled that includes a Custom Web Publishing extended privilege, the
Web Publishing Engine uses HTTP Basic Authentication to request authentication from web
users. The web user’s browser displays the HTTP Basic Authentication dialog box for the user to
enter a user name and password for an account that has a Custom Web Publishing extended
privilege.

The following list summarizes the process that occurs when a web user uses a Custom Web
Publishing solution to access a database:
1 If you have not assigned a password for an account, web users only specify the account name.
1 If the Guest account is disabled, then users will be prompted for account name and password

when they access the database. The account must have a Custom Web Publishing extended
privilege enabled.

Chapter 3 | Preparing databases for Custom Web Publishing 14
1 If the Guest account is enabled and has a privilege set enabled that includes a Custom Web
Publishing extended privilege, all web users automatically open the database with the access
privileges assigned to the Guest account. If the Custom Web Publishing extended privilege is
assigned to the Guest account:
1 Web users are not prompted for an account name and password when opening a file.
1 All web users will automatically log in with the Guest account and assume the Guest account

privileges. You can let users change their login accounts from a web browser with the Re-
Login script step (for example, to switch from the Guest account to an account with more
privileges).

1 The default privilege set for Guest accounts provides “read-only” access. You can change
the default privileges, including Extended Privileges, for this account. See FileMaker Pro
Help.

Note By default, web users cannot modify their account password from a web browser. You can
build this feature into a database with the Change Password script step, which allows web users
to change their passwords from their browser. See FileMaker Pro Help.
Protecting your published databases

When using Custom Web Publishing with XML, you can limit who can access your published
databases.
1 Assign passwords to database accounts that are used for Custom Web Publishing.
1 Enable Custom Web Publishing with XML only in the privilege sets for accounts that you want

to allow access to your published databases.
1 To enable or disable a type of Custom Web Publishing technology for an individual database,

set the extended privilege.
1 Enable or disable a type of Custom Web Publishing technology for all Custom Web Publishing

solutions in the Web Publishing Engine using FileMaker Server Admin Console. See
FileMaker Server Help.

1 Configure your web server to restrict the IP addresses that can access your databases via the
Web Publishing Engine. For example, you can specify that only web users from the IP address
192.168.100.101 can access your databases. For information on restricting IP addresses, see
the documentation for your web server.

1 Use Secure Sockets Layer (SSL) encryption for communications between your web server and
web users’ browsers. SSL encryption converts information exchanged between servers and
clients into unintelligible information through using mathematical formulas known as ciphers.
These ciphers are used to transform the information back into understandable data through
encryption keys. For information on enabling and configuring SSL, see the documentation for
your web server.

For more information on securing your database, see FileMaker Pro User’s Guide, available as a
PDF file from http://www.filemaker.com/documentation.

Chapter 3 | Preparing databases for Custom Web Publishing 15
Web server support for Internet media types (MIME)

Your web server determines the support for the current MIME (Multipurpose Internet Mail
Extensions) types registered for the Internet. The Web Publishing Engine does not change a web
server’s support for MIME. For more information, see the documentation for your web server.
About publishing the contents of container fields on the web

The contents of a container field can be embedded in the database, linked by reference using a
relative path, or stored externally.

Container field objects embedded in a database
If a container field stores the actual files in the FileMaker database, then you don’t need to do
anything with the container field contents if the database file is properly hosted and accessible on
FileMaker Server. See “About the URL syntax for FileMaker container objects in XML solutions”
on page 23.

Note The Web Publishing Engine supports progressive download of audio files (.mp3), video
files (.mov, .mp4, and .avi recommended), and PDF files for interactive containers. For example,
a web user may start viewing a movie even if the entire movie file has not yet downloaded. To
allow for progressive download, you may need to create the files using options that support
streaming or that optimize for display on the web. For example, create PDF files using the
“Optimize for Web Viewing” option.

Container fields with referenced files
If a container field stores a file reference, then you must follow these steps to publish the
referenced files using the Web Publishing Engine:

To publish container field objects that are stored as a file reference:

1. Store the container object files in the Web folder inside the FileMaker Pro folder.

2. In FileMaker Pro, insert the objects into the container field and select the Store only a
reference to the file option.

3. Copy or move the referenced object files in the Web folder to the same relative path location in
the root folder of the web server software.
1 For IIS (Windows): <drive>:\Inetpub\wwwroot where <drive> is the drive on which

the Web Publishing Engine component of your FileMaker Server deployment resides.
1 For Apache (Mac OS): /Library/WebServer/Documents

Notes

1 For container objects stored as file references, your web server must be configured to support
the MIME (Multipurpose Internet Mail Extensions) types for the kinds of files you want to serve,
such as movies. Your web server determines the support for the current MIME types registered
for the Internet. The Web Publishing Engine does not change a web server’s support for MIME.
For more information, see the documentation for your web server.

1 All QuickTime movies stored in a container field are stored by reference.

Chapter 3 | Preparing databases for Custom Web Publishing 16
Container fields with externally stored data
If a container field stores objects externally — that is, if you selected Store container data
externally in the FileMaker Pro Field Options dialog box — then use the Upload Database
assistant to transfer database files from the client file system to FileMaker Server. The Upload
Database assistant transfers the database and the container field objects to the correct folders on
your server for hosting. See FileMaker Server Help for more information on how to use the Upload
Database assistant. See FileMaker Pro Help for information on setting up container fields to store
data externally.

If you manually upload a database that uses a container field with externally stored objects, then
you must follow these steps to publish the externally stored container objects using the Web
Publishing Engine.

To upload a database manually:

1. Place the database file in the proper location on the server. Place the FileMaker Pro database
files that you want FileMaker Server to open — or shortcuts (Windows) or aliases (Mac OS) to
those files — in the following folders:
1 Windows (32-bit): [drive]:\Program Files\FileMaker\FileMaker
Server\Data\Databases\

1 Windows (64-bit): [drive]:\Program Files (x86)\FileMaker\FileMaker
Server\Data\Databases\

1 Mac OS: /Library/FileMaker Server/Data/Databases/
Or you can place the files in an optionally specified additional database folder.

2. In the folder where you placed the database, create a folder named RC_Data_FMS, if it
doesn’t already exist.

3. In the RC_Data_FMS folder, create a folder with a name that matches the name of your
database. For example, if your database is named Customers, then create a folder named
Customers. Place the externally stored objects in the new folder you created.

Note When databases are hosted on FileMaker Server, there is no way for multiple databases
to share a common folder of container objects. The container objects for each database needs
to be in a folder identified by that database’s name.

4. For files that will be shared from Mac OS, change the files to belong to the fmsadmin group.

For more information about manually uploading databases, see FileMaker Server Help.

Note The Web Publishing Engine supports progressive download of audio files (.mp3), video
files (.mov, .mp4, and .avi recommended), and PDF files for interactive containers. For example,
a web user may start viewing a movie even if the entire movie file has not yet downloaded. To
allow for progressive download, you may need to create the files using options that support
streaming or that optimize for display on the web. For example, create PDF files using the
“Optimize for Web Viewing” option.

Chapter 3 | Preparing databases for Custom Web Publishing 17
How web users view container field data
When you publish a database using the Web Publishing Engine, the following limitations apply to
container field objects:
1 Web users cannot modify or add to the contents of container fields. Web users cannot use

container fields to upload objects to the database.
1 For databases that use a container field with thumbnails enabled, the Web Publishing Engine

downloads the full file, not a thumbnail.
FileMaker scripts and Custom Web Publishing

The Manage Scripts feature in FileMaker Pro can automate frequently performed tasks and
combine several tasks. When used with Custom Web Publishing, FileMaker scripts allow web
users to perform more tasks or a series of tasks.
FileMaker supports over 65 script steps in Custom Web Publishing. Web users can perform a
variety of automated tasks when you use scripts in a query string for a URL. To see script steps
that are not supported, select Custom Web Publishing from the Show Compatibility list in the
Edit Script window in FileMaker Pro. Dimmed script steps are not supported for Custom Web
Publishing. For information on creating scripts, see FileMaker Pro Help.

Script tips and considerations
Although many script steps work identically on the web, there are several that work differently. See
“Script behavior in Custom Web Publishing solutions” on page 18. Before sharing your database,
evaluate all scripts that will be executed from a web browser. Be sure to log in with different user
accounts to make sure they work as expected for all clients. Check the Web Publishing Engine log
file (wpe.log) for any scripting-related errors; for more information, see “Using the Web Publishing
Engine log” on page 40.

Keep these tips and considerations in mind:
1 Use accounts and privileges to restrict the set of scripts that a web user can execute. Verify that

the scripts contain only web-compatible script steps, and only provide access to scripts that
should be used from a web browser.

1 Consider the side effects of scripts that execute a combination of steps that are controlled by
access privileges. For example, if a script includes a step to delete records, and a web user
does not log in with an account that allows record deletion, the script will not execute the Delete
Records script step. However, the script might continue to run, which could lead to unexpected
results.

1 In the Edit Script window, select Run script with full access privileges to allow scripts to
perform tasks that you would not grant individuals access to. For example, you can prevent
users from deleting records with their accounts and privileges, but still allow them to run a script
that would delete certain types of records under conditions predefined within a script.

Chapter 3 | Preparing databases for Custom Web Publishing 18
1 If your scripts contain steps that are unsupported, for example, steps that are not web-
compatible, use the Allow User Abort script step to determine how subsequent steps are
handled.
1 If the Allow User Abort script step option is enabled (on), unsupported script steps stop the

script from continuing.
1 If Allow User Abort is off, unsupported script steps are skipped and the script continues to

execute.
1 If this script step is not included, scripts are executed as if the feature is enabled, so

unsupported script steps stop scripts.

1 Some scripts that work with one step from a FileMaker Pro client may require an additional
Commit Record/Request step to save the data to the host. Because web users don’t have a
direct connection to the host, they aren’t notified when data changes. For example, features like
conditional value lists aren’t as responsive for web users because the data must be saved to
the host before the effects are seen in the value list field.

1 Any script that modifies data should include the Commit Record/Request step, because data
changes aren’t visible in the browser until the data is saved or “submitted” to the server. This
includes several script steps like Cut, Copy, Paste, and so on. Many single-step actions should
be converted into scripts to include the Commit Record/Request step. When designing scripts
that will be executed from a web browser, include the Commit Record/Request step at the end
of a script to make sure all changes are saved.

1 To create conditional scripts based on the type of client, use the Get(ApplicationVersion)
function. If the value returned includes “Web Publishing Engine” then you know that the current
user is accessing your database with Custom Web Publishing. For more information on
functions, see FileMaker Pro Help.

Script behavior in Custom Web Publishing solutions
The following script steps function differently on the web than in FileMaker Pro. For information on
all script steps, see FileMaker Pro Help.
Script step Behavior in Custom Web Publishing solutions
Perform Script Scripts cannot perform in other files, unless the files are hosted on FileMaker Server and Custom Web

Publishing is enabled in the other files.

Exit Application Logs off web users, closes windows, but does not exit the web browser application.

Allow User Abort Determines how unsupported script steps are handled. Enable to stop scripts from continuing, and
disable to skip unsupported steps. See “Script tips and considerations” on page 17 for more details.
Web users cannot abort Custom Web Publishing scripts, but this option allows unsupported script steps
to stop the script from continuing.

Set Error Capture This is always enabled with Custom Web Publishing. Web users cannot abort Custom Web Publishing
scripts.

Pause/Resume script Although this script is supported in Custom Web Publishing, you should avoid using it. When a Pause
step is executed, the script pauses. Only a script containing the Resume script step can make it resume
execution. If the script remains in a paused state until the session times out, then the script will not be
completed.

Sort Records You must save a sort order with the Sort Records script step to execute in Custom Web Publishing.

Open URL This script step has no effect in a Custom Web Publishing solution.

Chapter 3 | Preparing databases for Custom Web Publishing 19
Go to Field You cannot use Go to Field to make a particular field active in the web browser, but you can use this
script step in conjunction with other script steps to perform tasks. For example, you can go to a field,
copy the contents, go to another field and paste the value. To see the effect in the browser, be sure to
save the record with the Commit Record script step.

Commit
Record/Request

Submits the record to the database.

Script step Behavior in Custom Web Publishing solutions
Script triggers and Custom Web Publishing solutions
In FileMaker Pro, both scripts and user actions (such as the user clicking a field) can activate script
triggers. But in Custom Web Publishing, only scripts can activate script triggers. For more
information on script triggers, see FileMaker Pro Help.

Note For FileMaker Pro 12, the File Options dialog box has changed. As a result, to specify that
you want a script performed when a file is opened, you need to use the OnFirstWindowOpen script
trigger. Similarly, to specify that you want a script performed when a file is closed, you need to use
the OnLastWindowClose script trigger.

Chapter 4
Accessing XML data with the Web Publishing
Engine
You can obtain and update FileMaker data in Extensible Markup Language (XML) format by using
the Web Publishing Engine. In the same way that HTML has become the standard display
language for communication on the World Wide Web, XML has become the standard language
for structured data interchange. Many individuals, organizations, and businesses use XML to
transfer product information, transactions, inventory data, and other business data.
Using Custom Web Publishing with XML

If you know standard XML, you can start using the Web Publishing Engine after learning a few
unique details about Custom Web Publishing with XML, such as the URL syntax and query
parameters to use.
By using HTTP URL requests with FileMaker query commands and parameters, you can query a
database hosted by FileMaker Server and download the resulting data in XML format. For
example, you can query a database for all records in a certain postal code, and use the resulting
XML data in whatever way you want to.
For more general information on XML, additional examples that use XML, and links to XML
resources, see the FileMaker website at http://www.filemaker.com.

Note The Web Publishing Engine generates XML data that is well-formed and compliant with the
XML 1.0 specification. For details about the requirements for well-formed XML, see the XML
specification, which is available at http://www.w3.org.

Differences between the Web Publishing Engine and FileMaker Pro XML
Import/Export
The Web Publishing Engine and FileMaker Pro both enable you to use XML data with FileMaker
databases. There are, however, some important differences between the two methods:
1 For accessing XML data, the Web Publishing Engine supports the fmresultset,
FMPXMLRESULT, and FMPXMLLAYOUT grammars. For XML import, FileMaker Pro uses the
FMPXMLRESULT grammar, and for export, FileMaker Pro uses the FMPXMLRESULT grammar.
See “Accessing XML data via the Web Publishing Engine” on page 24.

1 To access XML data with the Web Publishing Engine, you use a Web Publishing Engine query
string in a URL. To import and export XML with FileMaker Pro, you use FileMaker Pro menu
commands or scripts.

1 The Web Publishing Engine is server-based and can be installed on the same or a different host
than FileMaker Server. FileMaker Pro XML import and export is desktop-based.

1 You can dynamically access XML data from FileMaker databases by using URL requests with
the Web Publishing Engine. The FileMaker Pro XML export feature generates a pre-specified
XML data file.

1 Working with XML data via the Web Publishing Engine is an interactive operation.
FileMaker Pro XML import and export is a batch operation.

Chapter 4 | Accessing XML data with the Web Publishing Engine 21
1 The Web Publishing Engine can access XML data from a FileMaker portal, but FileMaker Pro
cannot.

1 The Web Publishing Engine can access data in a container field, but FileMaker Pro cannot.
1 The Web Publishing Engine provides real-time access to FileMaker data via HTTP or HTTPS,

but FileMaker Pro cannot.

Note For information on using FileMaker Pro to import and export data in XML format, see
FileMaker Pro Help.

How the Web Publishing Engine generates XML data from a request
After a request for XML data is sent to the web server, the Web Publishing Engine queries the
FileMaker database and returns the data as an XML document.

Web
Browser

Web Server

Web Server Module

FileMaker Server Web
Publishing Engine

Web Publishing Core

Custom Web
Publishing Engine

(CWPE)

FileMaker
Database Server

FileMaker Server Web
Publishing Engine

Web Publishing Core

Web Server

Web Server Module
Customers.fmp12

Request for XML data is routed from web browser or program to FileMaker Database Server

Products.fmp12

Catalog.fmp12

1. HTTP or
HTTPS request
for XML data is
sent from web
browser or
program to web
server.

2. Web server routes
request to Web
Publishing Core.

3. Web Publishing
Core requests data
from database hosted
by FileMaker
Database Server.

XML data is routed back from FileMaker Database Server to web browser or program

6. Web server
sends output to
web browser or
program.

5. Web Publishing Core
converts data to XML and
sends it to web server.

4. FileMaker Database
Server sends requested
data to Web Publishing
Core.

Orders.fmp12

Web
Browser

Custom Web
Publishing Engine

(CWPE)

Chapter 4 | Accessing XML data with the Web Publishing Engine 22
General process for accessing XML data from the Web Publishing Engine

Here is an overview of the process for using the Web Publishing Engine to access XML data in a
FileMaker database:

1. In the FileMaker Server Admin Console, make sure XML Publishing is enabled. See
FileMaker Server Help.

2. In FileMaker Pro, open each FileMaker database that you’re publishing and make sure the
database has the fmxml extended privilege enabled for XML Custom Web Publishing. See
“Enabling Custom Web Publishing in a database” on page 13.
To access XML data in a portal, set the view for the database layout to View as Form or View
as List. If a user or script changes the view of the database layout to View as Table, only the
first related record (first row of the portal) is accessible as XML data.
The XML data is output in an order that corresponds to the order in which field objects were
added to the layout. If you want the XML data order to match the order in which fields appear
on the screen (top-to-bottom, left-to-right order), then select all fields, group them, and then
ungroup them. This procedure resets the layout order to match the screen order.

3. Send an HTTP or HTTPS request in the form of a URL that specifies the FileMaker XML
grammar, one query command, and one or more FileMaker query parameters to the Web
Publishing Engine through an HTML form, an HREF link, or a script in your program or web
page. You can also type the URL in a web browser.
For information on specifying the URL, see the next section, “About the URL syntax for XML
data and container objects.” For information on query commands and parameters, see “Using
FileMaker query strings to request XML data” on page 34, and appendix A, “Valid names used
in query strings.”

4. The Web Publishing Engine uses the grammar you specified in the URL to generate XML data
containing the results of your request, such as a set of records from the database, and returns
it to your program or web browser.

5. The web browser, if it has an XML parser, displays the data, or the program uses the data in
the way you specified.
About the URL syntax for XML data and container objects

This section describes the URL syntax for using the Web Publishing Engine to access XML data
and container objects from FileMaker databases.

About the URL syntax for XML data
The URL syntax for using the Web Publishing Engine to access XML data from FileMaker
databases is:
<scheme>://<host>[:<port>]/fmi/xml/<xml_grammar>.xml[?<query string>]

where:
1 <scheme> can be the HTTP or HTTPS protocol.
1 <host> is the IP address or domain name of the host where the web server is installed.
1 <port> is optional and specifies the port that the web server is using. If no port is specified,

then the default port for the protocol is used (port 80 for HTTP, or port 443 for HTTPS).

Chapter 4 | Accessing XML data with the Web Publishing Engine 23
1 <xml_grammar> is the name of the FileMaker XML grammar. Possible values are
fmresultset, FMPXMLRESULT, or FMPXMLLAYOUT. See “Using the fmresultset grammar” on
page 26 and “Using other FileMaker XML grammars” on page 29.

1 <query string> is a combination of one query command and one or more query parameters
for FileMaker XML publishing. (The –dbnames command doesn’t require any parameters.) See
“Using FileMaker query strings to request XML data” on page 34, and appendix A, “Valid
names used in query strings.”

Note The URL syntax, including the names of the query command and parameters, is case
sensitive except for portions of the query string. The majority of the URL is in lowercase, with the
exception of the two uppercase grammar names: FMPXMLRESULT and FMPXMLLAYOUT. For
information on the rules for case sensitivity of the query string, see “Guidelines for using query
commands and parameters” on page 43.

Here are two examples of URLs for accessing XML data via the Web Publishing Engine:
http://server.company.com/fmi/xml/fmresultset.xml?-db=products&-lay=sales
&-findall

http://192.168.123.101/fmi/xml/FMPXMLRESULT.xml?-db=products&-lay=sales
&-findall

About the URL syntax for FileMaker container objects in XML solutions
In a generated XML document for an XML solution, the syntax used to refer to a container object
is different for container fields that store the actual object in the database, as opposed to container
fields that store a reference to the object.

If a container field stores the actual object in the database

The container field’s <data> element uses the following relative URL syntax to refer to the object:
<data>/fmi/xml/cnt/data.<extension>?<query string></data>

where <extension> is the filename extension identifying the type of object, such as .jpg. The
filename extension sets the MIME type to allow the web browser to properly identify the container
data. For information on <query string>, see the previous section, “About the URL syntax for
XML data.”
For example:
<data>/fmi/xml/cnt/data.jpg?-db=products&-lay=sales&-field=product_image(1)
&-recid=2</data>

Note In the generated XML for a container field, the value for the –field query parameter is a
fully qualified field name. The number in the parentheses indicates the repetition number for the
container field, and is generated for both repeating and non-repeating fields. See “About the
syntax for a fully qualified field name” on page 45.

To retrieve the container data from the database, use the following syntax:
<scheme>://<host>[:<port>]/fmi/xml/cnt/data.<extension>?<query string>

For information about <scheme>, <host>, or <port>, see the previous section, “About the URL
syntax for XML data.”

Chapter 4 | Accessing XML data with the Web Publishing Engine 24
For example:
http://www.company.com/fmi/xml/cnt/data.jpg?-db=products&-lay=sales
&-field=product_image(1)&-recid=2

If a container field stores a file reference instead of an actual object

The container field’s <data> element contains a relative path that refers to the object. For
example:
<data>/images/logo.jpg</data>

Note The referenced container object must be stored in the FileMaker Pro Web folder when the
record is created or edited, and then copied or moved to a folder with the same relative location
in the root folder of the web server software. See “About publishing the contents of container fields
on the web” on page 15.

If a container field is empty

The container field’s <data> element is empty.

About URL text encoding
The URLs for accessing XML data and container objects must be encoded in UTF-8 (Unicode
Transformation 8 Bit) format. See “About UTF-8 encoded data” on page 34.
For example, to set the value of the “info” field to fiancée, you could use the following URL:
http://server.company.com/fmi/xml/fmresultset.xml?-db=members
&-lay=relationships&-recid=2&info= fianc%C3%A9e&-edit

In this example URL, %C3%A9 is the URL encoded UTF-8 representation of the é character.
For more information on URL text encoding, see the URL specification, which is available at
http://www.w3.org.
Accessing XML data via the Web Publishing Engine

To access XML data via the Web Publishing Engine, you use a URL that specifies the name of the
FileMaker grammar to use, one FileMaker query command, and one or more FileMaker query
parameters. The Web Publishing Engine generates XML data from your database that is
formatted by one of the following types of XML grammars:
1 fmresultset: This is the recommended grammar for the Web Publishing Engine for accessing

XML data. It is flexible and is optimized for easier field access by name and for easier
manipulation of relatedset (portal) data. This grammar is also more directly linked to
FileMaker terminology and features such as global storage options and identification of
summary and calculation fields. To facilitate web publishing, this grammar is designed to be
more verbose than the FMPXMLRESULT grammar. See “Using the fmresultset grammar” on
page 26.

1 FMPXMLRESULT and FMPXMLLAYOUT: You can also use the FMPXMLRESULT and
FMPXMLLAYOUT grammars with the Web Publishing Engine for accessing XML data. To use
one stylesheet for both XML export and Custom Web Publishing, you must use the
FMPXMLRESULT grammar. To access value lists and field display information in layouts, you
must use the FMPXMLLAYOUT grammar. See “Using other FileMaker XML grammars” on
page 29.

Chapter 4 | Accessing XML data with the Web Publishing Engine 25
Depending on the grammar you specify in the URL request, the Web Publishing Engine will
generate an XML document using one of the grammars. Each XML document contains a default
XML namespace declaration for the grammar. See the next section, “About namespaces for
FileMaker XML.” Use one of these grammars in your document or web page to display and work
with FileMaker data in XML format.

Note XML data generated by the Web Publishing Engine is encoded using UTF-8 format
(Unicode Transformation Format 8). See “About UTF-8 encoded data” on page 34.

About namespaces for FileMaker XML
Unique XML namespaces help distinguish XML tags by the application they were designed for.
For example, if your XML document contains two <DATABASE> elements, one for FileMaker XML
data and another for Oracle XML data, the namespaces will identify the <DATABASE> element for
each.
The Web Publishing Engine generates a default namespace for each grammar.

About FileMaker database error codes
The Web Publishing Engine returns an error code in the error code elements at the beginning of
each XML document that represents the error, if any, in the execution of the most recently
executed query command. A value of zero (0) is returned for no error.

The error code element in the XML document indicates errors related to the database and query
strings. See appendix B, “Error codes for Custom Web Publishing.”

Retrieving the document type definitions for the FileMaker grammars
You can retrieve the document type definitions (DTDs) for the FileMaker grammars by using an
HTTP request.

For this grammar This default namespace is generated
fmresultset xmlns="http://www.filemaker.com/xml/fmresultset"

FMPXMLRESULT xmlns="http://www.filemaker.com/fmpxmlresult"

FMPXMLLAYOUT xmlns="http://www.filemaker.com/fmpxmllayout"

For this grammar This syntax is used
fmresultset <error code="0"></error>

FMPXMLRESULT <ERRORCODE>0</ERRORCODE>

FMPXMLLAYOUT <ERRORCODE>0</ERRORCODE>

For this grammar Use this HTTP request
fmresultset http://<host>[:<port]/fmi/xml/fmresultset.dtd

FMPXMLRESULT http://<host>[:<port]/fmi/xml/FMPXMLRESULT.dtd

FMPXMLLAYOUT http://<host>[:<port]/fmi/xml/FMPXMLLAYOUT.dtd

Chapter 4 | Accessing XML data with the Web Publishing Engine 26
Using the fmresultset grammar

The XML element names in this grammar use FileMaker terminology, and the storage of fields is
separated from the type of fields. The grammar also includes the ability to identify summary,
calculation, and global fields.
To use the fmresultset grammar, specify the following name of the fmresultset grammar in
the URL requesting the XML document from the Web Publishing Engine:
fmresultset.xml

For example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-findall

Note When specifying the fmresultset grammar, be sure to use lowercase.

The Web Publishing Engine will generate an XML document using the fmresultset grammar.
In the XML document, the Web Publishing Engine will reference the document type definition for
the fmresultset grammar in the <!DOCTYPE> instruction in the second line of the document,
immediately after the <?xml...?> instruction. The <!DOCTYPE> instruction specifies the URL for
downloading the DTD for the fmresultset grammar.

Description of elements in the fmresultset grammar
The fmresultset grammar consists primarily of the <datasource> element, the <metadata>
element, and the <resultset> element.

<datasource> element

In the fmresultset grammar, the <datasource> element contains the table, layout, date-
format, time-format, timestamp-format, total-count, and database attributes.
1 The date-format attribute of the <datasource> element specifies the format of dates in the

XML document:
MM/dd/yyyy

where:
1 MM is the 2-digit value for the month (01 through 12, where 01 is January and 12 is

December)
1 dd is the 2-digit value for the day of the month (01 through 31)
1 yyyy is the 4-digit value for the year

1 The time-format attribute of the <datasource> element specifies the format of times in the
XML document:
HH:mm:ss

where:
1 HH is the 2-digit value for hours (00 through 23, for the 24-hour format)
1 mm is the 2-digit value for minutes (00 through 59)
1 ss is the 2-digit value for seconds (00 through 59)

Chapter 4 | Accessing XML data with the Web Publishing Engine 27
1 The timestamp-format attribute of the <datasource> element combines the formats of date-
format and time-format into one timestamp:
MM/dd/yyyy HH:mm:ss

<metadata> element

The <metadata> element of the fmresultset grammar contains one or more <field-
definition> and <relatedset-definition> elements, each containing attributes for one
of the fields of the result set.

The <field-definition> attributes specify:
1 whether the field is an auto-enter field (“yes” or “no”)
1 whether the field is a four-digit-year field (“yes” or “no)
1 whether it is a global field (“yes” or “no”)
1 the maximum number of repeating values (max-repeat attribute)
1 the maximum number of characters allowed (max-characters attribute)
1 whether it is a not-empty field (“yes” or “no”)
1 whether it is for numeric data only (“yes” or “no”)
1 result (“text”, “number”, “date”, “time”, “timestamp”, or “container”)
1 whether it is a time-of-day field (“yes” or “no”)
1 type (“normal”, “calculation”, or “summary”)
1 and the field name (fully qualified as necessary)

The <relatedset-definition> element represents a portal. Each related field in a portal is
represented by the <field-definition> element contained within the
<relatedset-definition> element. If there are multiple related fields in a portal, the field
definitions for the related fields are grouped within a single <relatedset-definition>
element.

<resultset> element

The <resultset> element contains the <record> elements returned as the result of a query
and an attribute for the total number of records found. Each <record> element contains the field
data for one record in the result set—including the mod-id and the record-id attributes for the
record, and the <data> element containing the data for one field in the record.
Each record in a portal is represented by a <record> element within the <relatedset>
element. The count attribute of the <relatedset> element specifies the number of records in
the portal, and the table attribute specifies the table associated with the portal.

Chapter 4 | Accessing XML data with the Web Publishing Engine 28
Example of XML data in the fmresultset grammar
The following is an example of XML data generated with the fmresultset grammar.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE fmresultset PUBLIC "-//FMI//DTD fmresultset//EN"
""http://localhost:80/fmi/xml/fmresultset.dtd">

 <fmresultset xmlns="http://www.filemaker.com/xml/fmresultset" version="1.0">

 <error code="0" />

 <product build="12/31/2012" name="FileMaker Web Publishing Engine"
version="0.0.0.0" />

 <datasource database="art" date-format="MM/dd/yyyy" layout="web3" table="art"
time-format="HH:mm:ss" timestamp-format="MM/dd/yyyy HH:mm:ss" total-count="12"
/>

 <metadata>

 <field-definition auto-enter="no" four-digit-year="no" global="no" max-
repeat="1" name="Title" not-empty="no" numeric-only="no" result="text" time-of-
day="no" type="normal" />

 <field-definition auto-enter="no" four-digit-year="no" global="no" max-
repeat="1" name="Artist" not-empty="no" numeric-only="no" result="text" time-
of-day="no" type="normal" />

 <relatedset-definition table="artlocations">

 <field-definition auto-enter="no" four-digit-year="no" global="no" max-
repeat="1" name="artlocations::Location" not-empty="no" numeric-only="no"
result="text" time-of-day="no" type="normal" />

 <field-definition auto-enter="no" four-digit-year="no" global="no" max-
repeat="1" name="artlocations::Date" not-empty="no" numeric-only="no"
result="date" time-of-day="no" type="normal" />

 </relatedset-definition>

 <field-definition auto-enter="no" four-digit-year="no" global="no" max-
repeat="1" name="Style" not-empty="no" numeric-only="no" result="text" time-of-
day="no" type="normal" />

 <field-definition auto-enter="no" four-digit-year="no" global="no" max-
repeat="1" name="length" not-empty="no" numeric-only="no" result="number" time-
of-day="no" type="calculation" />

 </metadata>

 <resultset count="1" fetch-size="1">

 <record mod-id="6" record-id="14">

 <field name="Title">

 <data>Spring in Giverny 3</data>

 </field>

 <field name="Artist">

 <data>Claude Monet</data>

 </field>

 <relatedset count="0" table="artlocations" />

 <field name="Style">

 <data />

 </field>

 <field name="length">

 <data>19</data>

Chapter 4 | Accessing XML data with the Web Publishing Engine 29
 </field>

 </record>

 </resultset>

 </fmresultset>
Using other FileMaker XML grammars

The other FileMaker XML grammars contain information about field types, value lists, and layouts.
FMPXMLRESULT is functionally equivalent to fmresultset. To access value lists and field display
information in layouts, you must use the FMPXMLLAYOUT grammar. The FMPXMLRESULT and
FMPXMLLAYOUT grammars are more compact for data interchange.
To use the FMPXMLRESULT grammar, specify the following grammar name in the URL requesting
the XML document from the Web Publishing Engine:
FMPXMLRESULT.xml

For example:
http://192.168.123.101/fmi/xml/FMPXMLRESULT.xml?-db=employees&-lay=family
&-findall

To use the FMPXMLLAYOUT grammar, specify the following grammar name with the –view query
command in the URL requesting the XML document from the Web Publishing Engine:
FMPXMLLAYOUT.xml

For example:
http://192.168.123.101/fmi/xml/FMPXMLLAYOUT.xml?-db=employees&-lay=family
&-view

Note When specifying the FMPXMLRESULT and FMPXMLLAYOUT grammars, be sure to enter the
grammar name in uppercase.

In the generated XML document, the Web Publishing Engine will reference the document type
definition for the grammar in the <!DOCTYPE> instruction in the second line of the document,
immediately after the <?xml...?> instruction. The <!DOCTYPE> instruction specifies the URL for
downloading the DTD for the grammar.

Description of elements in the FMPXMLRESULT grammar
In the FMPXMLRESULT grammar, the <DATABASE> element contains the NAME, RECORDS,
DATEFORMAT, LAYOUT, and TIMEFORMAT attributes.
The DATEFORMAT attribute of the <DATABASE> element specifies the format of dates in the XML
document. The TIMEFORMAT attribute of the <DATABASE> element specifies the format of times
in the XML document. The date and time formats for the FMPXMLRESULT and the fmresultset
grammars are the same. See the tables in “Description of elements in the fmresultset grammar”
on page 26.

Chapter 4 | Accessing XML data with the Web Publishing Engine 30
The <METADATA> element of the FMPXMLRESULT grammar contains one or more <FIELD>
elements, each containing information for one of the fields/columns of the result set—including the
name of the field as defined in the database, the field type, the Yes or No allowance for empty
fields (EMPTYOK attribute) and the maximum number of repeating values (MAXREPEAT
attribute). Valid values for field types are TEXT, NUMBER, DATE, TIME, TIMESTAMP, and
CONTAINER.
The <RESULTSET> element contains all of the <ROW> elements returned as the result of a query
and an attribute for the total number of records found. Each <ROW> element contains the
field/column data for one row in the result set. This data includes the RECORDID and MODID for
the row (see “–modid (Modification ID) query parameter” on page 55), and the <COL> element.
The <COL> element contains the data for one field/column in the row where multiple <DATA>
elements represent one of the values in a repeating or portal field.

Example of XML data in the FMPXMLRESULT grammar
The following is an example of XML data generated with the FMPXMLRESULT grammar.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE FMPXMLRESULT PUBLIC "-//FMI//DTD FMPXMLRESULT//EN"
""http://localhost:80/fmi/xml/FMPXMLRESULT.dtd">

<FMPXMLRESULT xmlns="http://www.filemaker.com/fmpxmlresult">

 <ERRORCODE>0</ERRORCODE>

 <PRODUCT BUILD="12/31/2012" NAME="FileMaker Web Publishing Engine"
VERSION="0.0.0.0" />

 <DATABASE DATEFORMAT="MM/dd/yyyy" LAYOUT="web" NAME="art" RECORDS="12"
TIMEFORMAT="HH:mm:ss" />

 <METADATA>

 <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Title" TYPE="TEXT" />

 <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Artist" TYPE="TEXT" />

 <FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Image" TYPE="CONTAINER" />

 </METADATA>

 <RESULTSET FOUND="1">

 <ROW MODID="6" RECORDID="15">

 <COL>

 <DATA>Spring in Giverny 4</DATA>

 </COL>

 <COL>

 <DATA>Claude Monet</DATA>

 </COL>

 <COL>

 <DATA>/fmi/xml/cnt/data.jpg?-db=art&-lay=web&-recid=15&-
field=Image(1)</DATA>

 </COL>

 </ROW>

 </RESULTSET>

</FMPXMLRESULT>

Chapter 4 | Accessing XML data with the Web Publishing Engine 31
The order of the <COL> elements corresponds with the order of the <FIELD> elements in the
<METADATA> element—for example, where the “Title” and “Artist” fields are listed in the
<METADATA> element, “Village Market” and then “Camille Pissarro” are listed in the same order
in the <RESULTSET> and <ROW> elements.

Description of elements in the FMPXMLLAYOUT grammar
In the FMPXMLLAYOUT grammar, the <LAYOUT> element contains the name of the layout, the
name of the database, and <FIELD> elements for each field found in the corresponding layout in
the database. Each <FIELD> element describes the style type of the field, and contains the
VALUELIST attribute for any associated value list of the field.
The <VALUELISTS> element contains one or more <VALUELIST> elements for each value list
found in the layout—each including the name of the value list and a <VALUE> element for each
value in the list.
Depending on the options selected in the Specify Fields for Value List dialog box in the
FileMaker database, the <VALUE> element contains a DISPLAY attribute that contains the value
in the first field only, the second field only, or both fields of a value list. For example, suppose the
first field in a value list stores the art style’s ID number (such as “100”), and the second field
displays the art style’s associated name (such as “Impressionism”). Here is a summary of the
contents of the DISPLAY attribute when the various combinations of options are selected in the
Specify Fields for Value List dialog box:
1 If Also display values from second field is not selected, the DISPLAY attribute contains the

value in the first field of a value list only. In the following XML data example, the DISPLAY
attribute contains the art style’s ID number only:
<VALUELISTS>

 <VALUELIST NAME="style">

 <VALUE DISPLAY="100">100</VALUE>

 <VALUE DISPLAY="101">101</VALUE>

 <VALUE DISPLAY="102">102</VALUE>

 </VALUELIST>

 </VALUELISTS>

1 If Also display values from second field and Show values only from second field are both
selected, the DISPLAY attribute contains the value in the second field only. In the following XML
data example, the DISPLAY attribute contains the art style’s name only:
<VALUELISTS>

 <VALUELIST NAME="style">

 <VALUE DISPLAY="Impressionism">100</VALUE>

 <VALUE DISPLAY="Cubism">101</VALUE>

 <VALUE DISPLAY="Abstract">102</VALUE>

 </VALUELIST>

 </VALUELISTS>

Chapter 4 | Accessing XML data with the Web Publishing Engine 32
1 If Also display values from second field is selected and Show values only from second
field is not selected, the DISPLAY attribute contains the values in both fields of a value list. In
the following XML data example, the DISPLAY attribute contains both the art style’s ID number
and the art style’s name:
<VALUELISTS>

 <VALUELIST NAME="style">

 <VALUE DISPLAY="100 Impressionism">100</VALUE>

 <VALUE DISPLAY="101 Cubism">101</VALUE>

 <VALUE DISPLAY="102 Abstract">102</VALUE>

 </VALUELIST>

 </VALUELISTS>

For date, time, and timestamp fields, data for value lists are formatted using the “fm” format for
that field type. The “fm” formats are MM/dd/yyyy for date, HH:mm:ss for time, and MM/dd/yyyy
HH:mm:ss for timestamp. For example, if a “birthdays” value list is used for a pop-up menu on a
“birthdate” field of a layout, and the “birthdate” field is of type date, then the values output for that
value list will all be in the “fm” date format.

Note If two fields with different field types on a layout share the same value list, the first field’s
type determines the format of the value list data.

Chapter 4 | Accessing XML data with the Web Publishing Engine 33
Example of XML data in the FMPXMLLAYOUT grammar
The following is an example of XML data generated with the FMPXMLLAYOUT grammar.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE FMPXMLLAYOUT PUBLIC "-//FMI//DTD FMPXMLLAYOUT//EN"
""http://localhost:80/fmi/xml/FMPXMLLAYOUT.dtd">

 <FMPXMLLAYOUT xmlns="http://www.filemaker.com/fmpxmllayout">

 <ERRORCODE>0</ERRORCODE>

 <PRODUCT BUILD="12/31/2012" NAME="FileMaker Web Publishing Engine"
VERSION="0.0.0.0" />

 <LAYOUT DATABASE="art" NAME="web2">

 <FIELD NAME="Title">

 <STYLE TYPE="EDITTEXT" VALUELIST="" />

 </FIELD>

 <FIELD NAME="Artist">

 <STYLE TYPE="EDITTEXT" VALUELIST="" />

 </FIELD>

 <FIELD NAME="Image">

 <STYLE TYPE="EDITTEXT" VALUELIST="" />

 </FIELD>

 <FIELD NAME="artlocations::Location">

 <STYLE TYPE="EDITTEXT" VALUELIST="" />

 </FIELD>

 <FIELD NAME="artlocations::Date">

 <STYLE TYPE="EDITTEXT" VALUELIST="" />

 </FIELD>

 <FIELD NAME="Style">

 <STYLE TYPE="POPUPMENU" VALUELIST="style" />

 </FIELD>

 </LAYOUT>

 <VALUELISTS>

 <VALUELIST NAME="style">

 <VALUE DISPLAY="Impressionism">100</VALUE>

 <VALUE DISPLAY="Cubism">101</VALUE>

 <VALUE DISPLAY="Abstract">102</VALUE>

 </VALUELIST>

 </VALUELISTS>

 </FMPXMLLAYOUT>

Chapter 4 | Accessing XML data with the Web Publishing Engine 34
About UTF-8 encoded data

All XML data generated by the Web Publishing Engine is encoded in UTF-8 (Unicode
Transformation 8 Bit) format. This format compresses data from the standard Unicode format of
16 bits to 8 bits for ASCII characters. XML parsers are required to support Unicode and UTF-8
encoding.
UTF-8 encoding includes direct representations of the values of 0-127 for the standard ASCII set
of characters used in English, and provides multibyte encodings for Unicode characters with
higher values.

Note Be sure to use a web browser or text editor program that supports UTF-8 files.

The UTF-8 encoding format includes the following features:
1 All ASCII characters are one-byte UTF-8 characters. A legal ASCII string is a legal UTF-8 string.
1 Any non-ASCII character (any character with the high-order bit set) is part of a multibyte

character.
1 The first byte of any UTF-8 character indicates the number of additional bytes in the character.
1 The first byte of a multibyte character is easily distinguished from the subsequent byte, which

makes it is easy to locate the start of a character from an arbitrary position in a data stream.
1 It is easy to convert between UTF-8 and Unicode.
1 The UTF-8 encoding is relatively compact. For text with a large percentage of ASCII characters,

it is more compact than Unicode. In the worst case, a UTF-8 string is only 50% larger than the
corresponding Unicode string.
Using FileMaker query strings to request XML data

To request XML data from a FileMaker database, you use the FileMaker query commands and
parameters in a query string. For example, you can use the –findall query command in the
following query string in a URL to request a list of all products in a FileMaker database named
“products”:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=products-lay=sales&-findall

A query string must contain only one query command, such as –new. Most query commands also
require various matching query parameters in the query string. For example, all query commands
except –dbnames require the –db parameter that specifies the database to query.
You can also use query commands and parameters in a URL.
This section contains a summary of the FileMaker query commands and parameters. For more
information about using them in a query string, see “Valid names used in query strings” on
page 43.
Use this query command name To execute this command
–dbnames Retrieve names of all hosted and web-shared databases.

–delete Delete record.

–dup Duplicate record.

–edit Edit record.

–find Find record(s).

–findall Find all records.

Chapter 4 | Accessing XML data with the Web Publishing Engine 35
–findany Find a random record.

–findquery Perform complex or compound find request.

–layoutnames Retrieve names of all available layouts for a hosted and web-shared database.

–new Add new record.

–scriptnames Retrieve names of all available scripts for a hosted and web-shared database.

–view Retrieves layout information from a database if the FMPXMLLAYOUT grammar is
specified. Retrieves <metadata> section of XML document and an empty recordset
if the fmresultset or FMPXMLRESULT grammar is specified.

Use these query parameter names With these query commands
–db (database name) Required with all query commands except –dbnames

–delete.related Optional with –edit

–field Required to specify a field in a URL for container requests. See “About the URL
syntax for FileMaker container objects in XML solutions” on page 23.

fieldname At least one field name is required with –edit. Optional with –find. See “fieldname
(Non-container field name) query parameter” on page 52.

fieldname.op (operator) Optional with –find

–lay (layout name) Required with all query commands, except –dbnames, –layoutnames, and
–scriptnames

–lay.response (switch layout for XML
response)

Optional with all query commands, except –dbnames, –layoutnames, and
–scriptnames

–lop (logical operator) Optional with –find

–max (maximum records) Optional with –find, –findall, and –findquery

–modid (modification ID) Optional with –edit

–query Required with -findquery compound find requests

–recid (record ID) Required with –edit, –delete, –dup. Optional with –find

–relatedsets.filter Optional with –find, –findall, –findany, –edit, –new, –dup, and
–findquery

–relatedsets.max Optional with –find, –edit, –new, –dup, and –findquery

–script (perform script) Optional with –find, –findall, –findany, –new, –edit, –delete, –dup,
–view, and –findquery

–script.param (pass a parameter value
to the script specified by –script)

Optional with –script and –findquery

–script.prefind (perform script before
–find, –findany, and –findall)

Optional with –find, –findany, –findall, and –findquery

–script.prefind.param (pass a
parameter value to the script specified by
–script.prefind)

Optional with –script.prefind and –findquery

–script.presort (perform script before
sort)

Optional with –find, –findall, and –findquery

–script.presort.param (pass a
parameter value to the script specified by
–script.presort)

Optional with –script.presort and –findquery

–skip (skip records) Optional with –find, –findall, and –findquery

Use this query command name To execute this command

Chapter 4 | Accessing XML data with the Web Publishing Engine 36
Switching layouts for an XML response

–sortfield.[1-9] (sort field) Optional with –find, –findall, and –findquery

–sortorder.[1-9] (sort order) Optional with –find, –findall

Use these query parameter names With these query commands
The –lay query parameter specifies the layout you want to use when requesting XML data. Often,
the same layout is appropriate for processing the data that results from the request. In some
cases, you might want to search for data using a layout which contains fields that, for security
reasons, don’t exist in another layout you want to use for displaying the results. (To do a search
for data in a field, the field must be placed on the layout you specify in the XML request.)
To specify a different layout for displaying an XML response than the layout used for processing
the XML request, you can use the optional –lay.response query parameter.
For example, the following request searches for values greater than 100,000 in the “Salary” field
on the “Budget” layout. The resulting data is displayed using the “ExecList” layout, which does not
include the “Salary” field.
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=Budget&Salary=100000&Salary.op=gt&-find&-lay.response=ExecList
Understanding how an XML request is processed

There are several query parameters that affect the processing of an XML request and the
generation of an XML document.

Here is the order in which FileMaker Server and the Web Publishing Engine process an XML
request:

1. Process the –lay query parameter.

2. Set the global field values specified in the query (the “.global=” portion of a URL).

3. Process the –script.prefind query parameter, if specified.

4. Process the query commands, such as –find or –new.

5. Process the –script.presort query parameter, if specified.

6. Sort the resulting data, if a sort was specified.

7. Process the –script query parameter, if specified.

8. Process the –lay.response query parameter to switch to a different layout, if this is specified.

9. Generate the XML document.

If one of the above steps generates an error code, the request processing stops; any steps that
follow are not executed. However, any prior steps in the request are still executed.
For example, consider a request that deletes the current record, sorts the records, and then
executes a script. If the –sortfield parameter specifies a non-existent field, the request deletes
the current record and returns error code 102 (“Field is missing”), but does not execute the script.

Chapter 4 | Accessing XML data with the Web Publishing Engine 37
Troubleshooting XML document access

If you have trouble accessing XML documents with the Web Publishing Engine, verify that:
1 The extended privileges in the database are set for XML Custom Web Publishing and assigned

to a user account. See “Enabling Custom Web Publishing in a database” on page 13.
1 The database is hosted on the Database Server component of the FileMaker Server

deployment, and is opened by FileMaker Server. See FileMaker Server Help.
1 The database account name and password you are using, if any, are correct.
1 The web server component of the FileMaker Server deployment is running.
1 The Web Publishing Engine component of the FileMaker server deployment is running.
1 XML Publishing is enabled in the Web Publishing Engine component. See FileMaker Server

Help.

Chapter 5
Staging, testing, and monitoring a site
This chapter provides instructions for staging and testing a Custom Web Publishing site before
deploying it in a production environment. Instructions are also provided for using log files to
monitor the site during testing or after deployment.
Staging a Custom Web Publishing site

Before you can properly test your site, you must copy or move the required files to the correct
locations on the staging server(s).
To stage your site and prepare it for testing:

1. Complete all of the steps outlined in chapter 3, “Preparing databases for Custom Web
Publishing.”

2. Check that XML has been enabled and properly configured in the FileMaker Server Admin
Console.

Note For instructions, see FileMaker Server Help.

3. Verify that the web server and the Web Publishing Engine are running.

4. Copy or move any referenced container objects to the web server machine.
1 If the database file is properly hosted and accessible on the Database Server component of

the FileMaker Server deployment, and the container fields store the actual files in the
FileMaker database, then you don’t need to relocate the container field contents.

1 If a database container field stores a file reference instead of an actual file, then the
referenced container object must be stored in the FileMaker Pro Web folder when the record
is created or edited. To stage your site, you must copy or move the referenced containers to
a folder with the same relative location in the root folder of the web server software.

1 If a database container field stores the container object externally, then use the Upload
Database assistant to transfer the database file and container field objects from your
computer’s file system to FileMaker Server. If you manually upload a database that uses a
container field with externally stored objects, then you must copy or move the referenced
objects into a subfolder of the RC_Data_FMS folder, as described in “Container fields with
externally stored data” on page 16.

5. Copy any additional components of your web application to the web server machine. Your web
application processes the XML data before sending it to another application or to the client.

Chapter 5 | Staging, testing, and monitoring a site 39
Testing a Custom Web Publishing site

Before notifying users that your Custom Web Publishing site is available, verify that it looks and
functions as you expect.
1 Test features like finding, adding, deleting, and sorting records with different accounts and

privilege sets.
1 Verify that privilege sets are performing as expected by logging in with different accounts. Make

sure unauthorized users can’t access or modify your data.
1 Check all scripts to verify that the outcome is expected. See “FileMaker scripts and Custom

Web Publishing” on page 17 for information on designing web-friendly scripts.
1 Test your site with different operating systems and web browsers.

Note If you don’t have a network connection and you have installed FileMaker Server using a
single machine deployment—with the web server, Web Publishing Engine, and Database Server
on one computer—then you can test your Custom Web Publishing site by using http://127.0.0.1/
in the URL. For information on the URL syntax, see “About the URL syntax for XML data and
container objects” on page 22.
Examples of stylesheets for testing XML output

Here are two examples of XSLT stylesheets that are useful for testing XML output.
1 The following stylesheet example outputs the requested XML data without doing any

transformation. This stylesheet is useful for displaying the actual XML data that the Web
Publishing Engine is using.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fmrs="http://www.filemaker.com/xml/fmresultset">

<xsl:output method="xml"/>

<xsl:template match="/">

<xsl:copy-of select="."/>

</xsl:template>

</xsl:stylesheet>

1 When debugging a stylesheet, you can use the following example of an HTML <textarea> tag
to display the XML source document that was accessed via the stylesheet in a scrolling text
area.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fmrs="http://www.filemaker.com/xml/fmresultset">

<xsl:output method="html"/>

<html>

<body>

<xsl:template match="/fmrs:fmresultset">

<textarea rows="20" cols="100">

Chapter 5 | Staging, testing, and monitoring a site 40
<xsl:copy-of select="."/>

</textarea>

</xsl:template>

</body>

</html>

</xsl:stylesheet>
Monitoring your site

You can use the following types of log files to monitor your Custom Web Publishing site and gather
information about web users who visit your site:
1 Web server access and error logs
1 Web Publishing Engine log
1 Web Server Module error log
1 Tomcat logs

Using the web server access and error logs
IIS (Windows): The Microsoft IIS web server generates an access log file and displays errors in
the Windows Event Viewer instead of writing them to a log file. The access log file, which is in the
W3C Extended Log File Format by default, is a record of all incoming HTTP requests to the web
server. You can also use the W3C Common Logfile Format for the access log. For more
information, see the documentation for the Microsoft IIS web server.
Apache (Mac OS): The Apache web server generates an access log file and an error log file. The
Apache access log file, which is in the W3C Common Logfile Format by default, is a record of all
incoming HTTP requests to the web server. The Apache error log is a record of problems involving
processing HTTP requests. For more information on these log files, see the documentation for the
Apache web server.
For information on the W3C Common Logfile Format and the W3C Extended Log File Format, see
the World Wide Web Consortium website at http://www.w3.org.

Using the Web Publishing Engine log
By default, the Web Publishing Engine generates a log file called wpe.log that contains a record
of any Web Publishing Engine errors that have occurred, including application errors, usage
errors, and system errors. You can also have the Web Publishing Engine include information
related to Custom Web Publishing, such as end-user XML requests to generate web publishing
output or changes to the Custom Web Publishing settings.
The wpe.log file is located on the Web Publishing Engine component of the FileMaker Server
deployment:
1 IIS (Windows):
<drive>:\Program Files\FileMaker\FileMaker Server\Logs\wpe.log
where <drive> is the primary drive from which the system is started.

1 Apache (Mac OS): /Library/FileMaker Server/Logs/wpe.log

Chapter 5 | Staging, testing, and monitoring a site 41
Web Publishing Engine log settings

The wpe.log file is generated if the Enable logging for Custom Web Publishing option is
enabled in the Admin Console.

The Error level messages setting is enabled by default. For information on setting these options
using the Admin Console, see FileMaker Server Help.

Note For Custom Web Publishing with FileMaker Server 12, the wpe.log file replaces the
wpc_access_log.txt and pe_application_log.txt files used in previous releases.

Important Over time, the wpe.log file may become very large. Use the Admin Console to set the
maximum size for the wpe.log file. When the wpe.log file reaches this maximum size, the Web
Publishing Engine copies the wpe.log file to a single backup file, wpe.log.1, and creates a new
wpe.log file. You may wish to save an archive of the wpe.log.1 file on a regular basis, if you want
more than one backup copy.

Web Publishing Engine log format

The wpe.log file uses the following format for each entry:
[TIMESTAMP_GMT] [WPC_HOSTNAME] [CLIENT_IP:PORT] [ACCOUNT_NAME] [MODULE_TYPE]
[SEVERITY] [FM_ERRORCODE] [RETURN_BYTES] [MESSAGE]

where:
1 [TIMESTAMP_GMT] is the date and time of the entry, in Greenwich Mean Time (GMT).
1 [WPC_HOSTNAME] is the machine name for the machine where the Web Publishing Engine is

installed.
1 [CLIENT_IP:PORT] is the IP address and port of the client where the XML request originated.
1 [ACCOUNT_NAME] is the account name used for logging into the hosted FileMaker database.
1 [MODULE_TYPE] is either: XML, for Custom Web Publishing with XML requests, or PHP, for

Custom Web Publishing with PHP requests.
1 [SEVERITY] is either INFO, indicating an informational message, or ERROR, indicating an

error message.
1 [FM_ERROR_CODE] is the error number returned for an error message. The error number may

be an error code for FileMaker databases (see “Error code numbers for FileMaker databases”
on page 48).
In addition, the error number may be an HTTP error number, prefixed by an “HTTP:” string.

1 [RETURN_BYTES] is the number of bytes returned by the request.
1 [MESSAGE] provides additional information about the log entry.

Logging option enabled Information recorded in wpe.log
Error level messages Any Web Publishing Engine errors that have occurred, including application errors,

usage errors, and system errors.

Info and Error Level
messages

Any errors as described above, and information about access to the Web Publishing
Engine. It contains a record of all end-user XML requests to generate Custom Web
Publishing output.

Chapter 5 | Staging, testing, and monitoring a site 42
Web Publishing Engine log message examples

The following examples show the types of messages that may be included in the wpe.log file:
1 When the Web Publishing Engine starts and stops

2012-06-02 15:15:31 -0700 - - - - INFO - - FileMaker Server
Web Publishing Engine started.

2012-06-02 15:46:52 -0700 - - - - INFO - - FileMaker Server
Web Publishing Engine stopped.

1 Successful or failed XML query requests
2012-06-02 15:21:08 -0700 WPC_SERVER 192.168.100.101:0 jdoe XML
INFO 0 3964 "/fmi/xml/fmresultset.xml?-db=Contacts&-
lay=Contact_Details&-findall"

2012-06-02 15:26:31 -0700 WPC_SERVER 192.168.100.101:0 jdoe XML
ERROR 5 596 "/fmi/xml/fmresultset.xml?-db=Contacts&-
layout=Contact_Details&-findall"

1 Scripting errors
2012-06-02 17:33:12 -0700 WPC_SERVER 192.168.100.101:0 jdoe - ERROR
4 - Web Scripting Error: 4, File: "10b_MeetingsUpload", Script: "OnOpen",
Script Step: "Show Custom Dialog"

1 Changes to the Custom Web Publishing settings
2012-06-09 10:59:49 -0700 WPC_SERVER 192.168.100.101:0 jdoe - INFO
- - XML Web Publishing Engine is enabled.

1 System errors
2012-06-02 15:30:42 -0700 WPC_SERVER 192.168.100.101:0 jdoe XML
ERROR - - Communication failed

Using the Web Server Module error log
If the web server is unable to connect to the Web Publishing Engine, the Web Server Module
generates a log file that records any errors with its operation. This file is called
web_server_module_log.txt and is located in the Logs folder in the FileMaker Server folder on the
web server host.

Using the Tomcat logs
When FileMaker Server has a problem caused by an internal web server error, you may find it
helpful to view the Tomcat logs. The Tomcat logs are located on the web server component of the
FileMaker Server deployment:
1 IIS (Windows): <drive>:\Program Files\FileMaker\FileMaker
Server\Admin\admin-master-tomcat\logs\
where <drive> is the primary drive from which the system is started.

1 Apache (Mac OS): /Library/FileMaker Server/Admin/admin-master-
tomcat/logs/

Appendix A
Valid names used in query strings
This appendix describes the valid names of query commands and parameters you can use in a
query string when accessing FileMaker data using the Web Publishing Engine.
About the query commands and parameters

The following is a complete list of the query command names and query parameter names:

Important The –lay parameter for specifying a layout is required with all query commands
except –dbnames, –layoutnames, and –scriptnames.

Guidelines for using query commands and parameters
When using query commands and parameters in a query string, keep the following guidelines in
mind:
1 A query string must contain only one query command; no more and no less. For example, a

query string can contain –new to add a new record, but it can’t contain –new and –edit in the
same query string.

1 Most query commands require various matching query parameters in the query string. For
example, all query commands except –dbnames require the –db parameter that specifies the
database to query. See the table of required parameters in “Using FileMaker query strings to
request XML data” on page 34.

Query command names Query parameter names
–dbnames (See page 48.)
–delete (See page 48.)
–dup (See page 48.)
–edit (See page 48.)
–find, –findall, –findany (See page 49.)
–findquery (See page 49.)
–layoutnames (See page 50.)
–new (See page 50.)
–scriptnames (See page 50.)
–view (See page 51.)

–db (See page 51.)
–field (See page 52.)
fieldname (See page 52.)
fieldname.op (See page 53.)
–lay (See page 54.)
–lay.response (See page 54.)
–lop (See page 54.)
–max (See page 54.)
–modid (See page 55.)
–query (See page 55.)
–recid (See page 56.)
–relatedsets.filter (See page 57.)
–relatedsets.max (See page 57.)
–script (See page 58.)
–script.param (See page 58.)
–script.prefind (See page 58.)
–script.prefind.param (See page 59.)
–script.presort (See page 59.)
–script.presort.param (See page 59.)
–skip (See page 60.)
–sortfield.[1-9] (See page 60.)
–sortorder.[1-9] (See page 61.)

Appendix A | Valid names used in query strings 44
1 For query parameters and field names, specify the particular value you want to use, such as -
db=employees. For query commands, don’t specify an “=” sign or a value after the command
name, such as –findall.

1 The Web Publishing Engine converts all reserved words to lowercase, including query
commands, query parameters, and command values where specific values are expected (for
example: –lop=and, –lop=or, –sortorder=ascend, –sortorder=descend,
–max=all).

1 Database names, layout names, and field names used in query strings are case insensitive,
such as using –lay=mylayout to specify the layout name MyLayout.

1 It is not recommended to use periods or parentheses in field names. In some cases, field names
with periods may work, but field names with the following exceptions can never be used:
1 The period cannot be followed by a number. For example, myfield.9 is an invalid field

name.
1 The period cannot be followed by the text string op (the two letters “op”). For example,
myfield.op is an invalid field name.

1 The period cannot be followed by the text string global (the word “global”). For example,
myfield.global is an invalid field name.

Field names containing any of these exceptions cannot be accessed via XML using an HTTP
query. These constructs are reserved for record IDs, as described in the section, “About the
syntax for a fully qualified field name,” below.

1 For the –find command, the value of a field is case insensitive. For example, you can use
Field1=Blue or Field1=blue. For the –new and –edit commands, the case you use in
the value of a field is preserved and stored in the database exactly as you specify in the query
string. For example, LastName=Doe.

Query command parsing
The Web Publishing Engine parses query commands in the following order, and stops parsing
XML queries with the first error. If an error code is returned, the error code returned matches the
first error that is identified.

1. Does the query have a command and is the query command valid?
It is an error if the query is missing the command or uses an unknown command. For example:
-database

2. Does the query have two commands?
For example: -find&-edit

3. Does the query have an invalid value for a command or parameter?
For example: -lop=amd

4. Is the query missing the required database name parameter (–db parameter)?

5. Is the query missing the required layout name parameter (–lay parameter)?

Appendix A | Valid names used in query strings 45
6. Does the query have an invalid sort?

7. Does the query have invalid field parameters?

Note If a query contains valid but extraneous information, the query is processed without an
error. For example, if you specify the –lop parameter on a –delete command, the –lop
parameter is ignored because it does not cause the query to be invalid or ambiguous.

For information about specific error codes returned, see appendix B, “Error codes for Custom Web
Publishing.”

About the syntax for a fully qualified field name
A fully qualified field name identifies an exact instance of a field. Because fields with common
names can be based on different tables, you must use fully qualified names, in some cases, to
avoid errors.
The syntax for specifying a fully qualified field name is:

table-name::field-name(repetition-number).record-id

where:
1 table-name is the name of the table that contains the field. The table name is only required if

the field is not in the underlying table of the layout specified in the query string.
1 field-name(repetition-number) is the specific value in a repeating field, and is only

required for repeating fields. The repetition number starts counting at the numeral 1. For
example, field-name(2) refers to the second value in the repeating field. If you don’t specify
a repetition number for a repeating field, the first value in the repeating field is used. The
repetition-number is required for the –new and –edit query commands involving repeating
fields, but it is not required for the –find command.

1 record-id is the record ID, and is only required if you are using a query string to add or edit
records in portal fields. See the following sections “Adding records to a portal,” and “Editing
records in a portal.” The record-id is required for the –new and –edit query commands
involving portal fields, but it is not required for the –find command.

Note To be accessible, fields must be placed on the layout you specify in the query string.

Appendix A | Valid names used in query strings 46
Using query commands with portal fields
The following sections describe how query commands work with portal fields.

Adding records to a portal

To add a new record to a portal at the same time you add a parent record, use the –new query
command and do the following in query string for the request:
1 Use the fully qualified field name for the related portal field.
1 Specify 0 as the record ID after the name of the related portal field.
1 Specify at least one of the fields for the parent record before specifying the related portal field.
1 Specify the data for the match field (key field) in the parent record.

For example, the following URL adds a new parent Employee record for John Doe, and a new
related record for Jane in the portal at the same time. The name of the related table is Dependents,
and the name of the related field in the portal is Names. The match field, ID, stores an employee
ID number.
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=family&FirstName=John&LastName=Doe&ID=9756&Dependents::Names.0=Jane&-new

Note You can only add one related record to a portal per request.

Editing records in a portal

To edit one or more records in a portal, use the –edit command and a record ID to specify the
parent record that contains the portal records you want to edit. Specify the particular portal record
to edit by using its record ID in a fully qualified field name. You can determine a record ID from the
record ID attribute of the <record> element in the <relatedset> element in the XML data. See
“Using the fmresultset grammar” on page 26.
For example, the following URL edits a record in a portal where the parent record has the record
ID of 1001. Dependents is the name of the related table, Names is the name of the related field in
the portal, and the 2 in Names.2 is the record ID of a portal record.
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-recid=1001&Dependents::Names.2=Kevin&-edit

Here is an example of how to use one request to edit multiple portal records via the parent record:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-recid=1001&Dependents::Names.2=Kevin&Dependents::Names.5=Susan&-edit

You can also use the –edit command and specify 0 as the portal record ID to add a new related
record in the portal for an existing parent record. For example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-recid=1001&Dependents::Names.0=Timothy&-edit

Appendix A | Valid names used in query strings 47
Deleting portal records

To delete portal records, use the –delete.related parameter with the –edit command rather
than using the –delete command.
For example, the following URL deletes record “1001” from the table “employees”:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-recid=1001&-delete

But the following URL deletes a portal record with a record ID of “3” from the related table called
“Dependents”, with the parent record ID of “1001”.
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-recid=1001&-delete.related=Dependents.3&-edit

For more information, see “–delete.related (Portal records delete) query parameter” on page 51.

Querying portal fields

In a solution that has many related records, querying and sorting portal records can be time
consuming. To restrict the number of records and rows to display in a related set, use the
–relatedsets.filter and –relatedsets.max parameters with find requests. For more
information, see “–relatedsets.filter (Filter portal records) query parameter” on page 57 and
“–relatedsets.max (Limit portal records) query parameter” on page 57.

About the syntax for specifying a global field
The syntax for specifying a global field is:
table-name::field-name(repetition-number).global

where global identifies a field as using global storage. For information about table-name and
field-name(repetition-number), see “About the syntax for a fully qualified field name” on
page 45. For information on global fields, see FileMaker Pro Help.
You must use the .global syntax to identify a global field in a query string. The Web Publishing
Engine sets the parameter values for global fields before performing the query command or setting
any other parameter values in the query string. For direct XML requests, the global values expire
immediately after the request is made.
If you don’t use the .global syntax to identify a global field in a query string, the Web Publishing
Engine evaluates the global field along with the remainder of the query string without setting the
global field value first.
For example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=departments
&Country.global=USA&-recid=1&-edit

Appendix A | Valid names used in query strings 48
Query command reference

This section contains information about the query commands available for XML requests.

–dbnames (Database names) query command
Retrieves the names of all databases that are hosted by FileMaker Server and enabled for Custom
Web Publishing with XML.
Required query parameters: (none)
Example:
To retrieve the database names:
http://192.168.123.101/fmi/xml/fmresultset.xml?-dbnames

–delete (Delete record) query command
Deletes the record as specified by –recid parameter
Required query parameters: –db, –lay, –recid
Optional query parameter: –script
Example:
To delete a record:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-recid=4&-delete

–dup (Duplicate record) query command
Duplicates the record specified by –recid
Required query parameters: –db, –lay, –recid
Optional query parameter: –script
Example:
To duplicate the specified record:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-recid=14&-dup

–edit (Edit record) query command
Updates the record specified by the –recid parameter, populating the fields with the contents of
any field name/value pairs. The –recid parameter indicates which record should be edited.
Required query parameters: –db, –lay, –recid, one or more field name(s)
Optional query parameter: –modid, –script, field name

Note For information on editing records in a portal, see “Editing records in a portal” on page 46.

Example:
To edit a record:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-recid=13&Country=USA&-edit

Appendix A | Valid names used in query strings 49
–find, –findall, or –findany (Find records) query commands
Submits a search request using defined criteria
Required query parameters: –db, –lay
Optional query parameters: –recid, –lop, –op, –max, –skip, –sortorder, –sortfield,
–script, –script.prefind, –script.presort, field name
Examples:
To find a record by field name:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=family&Country=USA&-find

Note Specifying a field name multiple times in a single request is not supported; FileMaker
Server parses all of the values, but uses only the last value parsed.

To find a record by record ID:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-recid=427&-find

To find all records in the database, use –findall:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-findall

To find a random record, use –findany:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-lay=family
&-findany

–findquery (Compound find) query command
Submits a search request using multiple find records and omit records requests.
Required query parameters: –db, –lay, –query
Optional query parameters: –max, –skip, –sortorder, –sortfield, –script,
–script.prefind, –script.presort
Example:
Find records for cats or dogs that are not named “Fluffy.”
http://host/fmi/xml/fmresultset.xml?-db=vetclinic&-lay=animals
&-query=(q1);(q2);!(q3)&-q1=typeofanimal&-q1.value=Cat&-q2=typeofanimal
&-q2.value=Dog&-q3=name&-q3.value=Fluffy&-findquery

Using the -findquery command for compound finds

A –findquery statement consists of four parts, in the following order:
1 The –query parameter
1 The query request declarations, consisting of the query identifier declarations and request

operations.

Appendix A | Valid names used in query strings 50
1 The search field and value definitions for each query identifier.
1 Define query identifiers. A query identifier is the letter "q" followed by a number. For example:
-q1

1 Define query identifier values with the parameter. For example: -q1.value=fieldvalue
1 Define query identifier operators by including it as part of the fieldvalue expression. For

example, to use an asterisk as a “begins with” operator: -q1.value=fieldvalue*
1 The –findquery command, at the end of the complete statement.
For more information on using the –query parameter, see “–query (Compound find request)
query parameter” on page 55.

–layoutnames (Layout names) query command
Retrieves the names of all available layouts for a specified database that is hosted by FileMaker
Server and enabled for Custom Web Publishing with XML.
Required query parameters: –db
Example:
To retrieve the names of available layouts:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-layoutnames

–new (New record) query command
Creates a new record and populates that record with the contents of any field name/value pairs.
Required query parameters: –db, –lay
Optional query parameter: one or more field name(s), –script

Note For information on including new data for a portal, see “Adding records to a portal” on
page 46.

Example:
To add a new record:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&Country=Australia&-new

–scriptnames (Script names) query command
Retrieves the names of all available scripts for a specified database that is hosted by FileMaker
Server and enabled for Custom Web Publishing with XML.
Required query parameters: –db
Example:
To retrieve the names of all scripts:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees&-scriptnames

Appendix A | Valid names used in query strings 51
–view (View layout information) query command
If the FMPXMLLAYOUT grammar is specified, retrieves layout information from a database and
displays it in the FMPXMLLAYOUT grammar. If a data grammar (fmresultset or
FMPXMLRESULT) is specified, retrieves the metadata section of XML document and an empty
recordset.
Required query parameters: –db, –lay
Optional query parameter: –script
Examples:
To retrieve layout information:
http://192.168.123.101/fmi/xml/FMPXMLLAYOUT.xml?-db=employees
&-lay=departments&-view

To retrieve metadata information:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-view
Query parameter reference

This section contains information about the query parameters available for XML requests.

–db (Database name) query parameter
Specifies the database that the query command is applied to
Value is: Name of the database, not including the filename extension if any

Note When specifying the name of the database for the –db parameter in query strings, do not
include a filename extension. The actual database filename can optionally include an extension,
but extensions are not allowed as a value for the –db parameter.

Required with: All query commands except –dbnames
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-findall

–delete.related (Portal records delete) query parameter
Deletes a record from a portal field.
Optional with: –edit query command
Requires: A related table name and a record id
Example:
The following example deletes a portal record with a record ID of “20” from the related table called
“jobtable”, with a parent record ID of “7”.
http://host/fmi/xml/fmresultset.xml?-db=career&-lay=applications&-recid=7
&-delete.related=jobtable.20&-edit

Appendix A | Valid names used in query strings 52
–field (Container field name) query parameter
Specifies the name of a container field.
Required with: request for data in a container field
See “About the URL syntax for XML data and container objects” on page 22.

fieldname (Non-container field name) query parameter
Field names are used to control criteria for the –find query command, or to modify the contents
of a record. When you need to specify a value for a non-container field for a query command or
parameter, use the field name without the hyphen (-) character as the name portion of the
name/value pair.
Name is: Name of the field in the FileMaker database. If the field is not in the underlying table of
the layout specified in the query string, the field name must be fully qualified.
It is not recommended to use periods or parentheses in field names. In some cases, field names
with periods may work, but field names with the following exceptions can never be used:

1 The period cannot be followed by a number. For example, myfield.9 is an invalid field
name.

1 The period cannot be followed by the text string op (the two letters “op”). For example,
myfield.op is an invalid field name.

1 The period cannot be followed by the text string global (the word “global”). For example,
myfield.global is an invalid field name.

Field names containing any of these exceptions cannot be accessed via XML using an HTTP
query. These constructs are reserved for record IDs, as described in the section, “About the syntax
for a fully qualified field name” on page 45.
Value is: For the –new and –edit query commands, specify the value you want to store in the
field in the current record. For the –find query commands, specify the value you want to search
for in the field. When you specify the value for a date, time, or timestamp field, specify the value
using the “fm” format for that field type. The “fm” formats are MM/dd/yyyy for date, HH:mm:ss for
time, and MM/dd/yyyy HH:mm:ss for timestamp.
Required with: –edit query command
Optional with: –new and –find query commands
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-op=eq&FirstName=Sam&-max=1&-find

Note Specifying a field name multiple times in a single request is not supported; FileMaker
Server parses all of the values, but uses only the last value parsed.

Appendix A | Valid names used in query strings 53
fieldname.op (Comparison operator) query parameter
Specifies the comparison operator to apply to the field name that precedes the operator.
Comparison operators are used with the –find query command.
Value is: The operator you want to use. The default operator is “begins with”. Valid operators are as
follows:

Optional with: –find query command
Requires: A field name and a value
The syntax for specifying a comparison operator is:
table-name::field-name=value&table-name::field-name.op=op-symbol

where:
1 table-name is the table that contains the field and is only required if the field is not in the

source table of the layout specified in the query string.
1 op-symbol is one of the keywords in the preceding table, such as cn.

Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&name=Tim&name.op=cn&-find

You can use any FileMaker Pro find operator by specifying the bw keyword. For example, to find
a range of values using the range operator (...), you would specify the bw keyword and then you
would place the characters “...” before the search criteria.
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&IDnum=915...925&IDnum.op=bw&-find

For more information on the operators you can use to find text, see FileMaker Pro Help.

Keyword FileMaker Pro equivalent operator
eq =word

cn *word*

bw word*

ew *word

gt > word

gte >= word

lt < word

lte <= word

neq omit, word

Appendix A | Valid names used in query strings 54
–lay (Layout) query parameter
Specifies the database layout you want to use
Value is: Name of the layout
Required with: All query commands except –dbnames, –layoutnames, and –scriptnames.
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-view

–lay.response (Switch layout for response) query parameter
Specifies that FileMaker Server should use the layout specified by the –lay parameter when
processing a request, and switch to the layout specified by the –lay.response parameter when
processing the XML response.
If you don’t include the –lay.response parameter, FileMaker Server uses the layout specified
by the –lay parameter when processing both the request and the response.
You can use the –lay.response parameter for XML requests.
Value is: Name of the layout
Optional with: All query commands except –dbnames, –layoutnames, and –scriptnames.
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=Budget&Salary=100000&Salary.op=gt&-find&-lay.response=ExecList

–lop (Logical operator) query parameter
Specifies how the find criteria in the –find query command are combined as either an “and” or
an “or” search
Value is: and or or
If the –lop query parameter is not included, then the –find query command uses the “and” value.
Optional with: –find query command

Note Not supported by -findquery query command.

Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&Last+Name=Smith&Birthdate=2/5/1972&-lop=and&-find

–max (Maximum records) query parameter
Specifies the maximum number of records you want returned
Value is: A number, or use the value all to return all records. If –max is not specified, all records
are returned.
Optional with: –find, –findall, and -findquery query commands

Note The –max query parameter does not affect the values returned for portal records. To limit
the number of rows returned for portal records, see “–relatedsets.max (Limit portal records) query
parameter” on page 57.

Appendix A | Valid names used in query strings 55
Examples:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-max=10&-findall

http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-max=all&-findall

–modid (Modification ID) query parameter
The modification ID is an incremental counter that specifies the current version of a record. By
specifying a modification ID when you use an –edit query command, you can make sure that
you are editing the current version of a record. If the modification ID value you specify does not
match the current modification ID value in the database, the –edit query command is not allowed
and an error code is returned.
Value is: A modification ID, which is a unique identifier for the current version of a record in a
FileMaker database.
Optional with: –edit query command
Requires: –recid parameter
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-recid=22&-modid=6&last_name=Jones&-edit

–query (Compound find request) query parameter
Specifies the query names and search criteria for a compound find request. See “–findquery
(Compound find) query command” on page 49.
Value is: A query expression.
Required with: –findquery query command
The syntax for a compound find request is:
-query=<request-declarations><request-definitions>&-findquery

Where:
<request-declarations> is two or more request declarations.
1 Each request declaration is composed of one or more query identifiers separated by commas,

and enclosed in parentheses. A query identifier is the letter “q” followed by a number. For
example: q1

1 Enclosed in parentheses, the multiple queries act as logical AND searches that narrow the
found set. For example, (q1, q2) returns records that match q1 and q2.

Note It is not recommended to use the same fields for multiple q variables in the same “and”
search criteria.

Appendix A | Valid names used in query strings 56
1 As with FileMaker Pro, each request can be either a find request or an omit request. A find
request adds the matching records to the found set; an omit request removes the matching
records from the found set. The default is a find request. For an omit request, put an
exclamation point (!) in front of the opening parenthesis.
For example: (q1);!(q2)
In this example, q1 is a find request; q2 is an omit request because it is preceded by an
exclamation point.

1 Requests are separated by semicolons. Multiple find requests act as logical OR searches that
broaden the found set. For example, (q1);(q2) returns records that match q1 or q2. Omit
requests do not act as logical OR searches because omit requests remove records from the
found set.

1 Requests are executed in the order specified; the found set includes the results of the entire
compound find request.

<request-definitions> is a request definition for each request declaration. Each request
definition consists of a search field and value definition. A minus (-) sign starts the request
definition.

Syntax:
-<query-id>=<fieldname>&-<query-id>.value=<value>

For example:
-q1=typeofanimal&-q1.value=Cat

-q2=name&-q2.value=Fluffy

Example:
Find records of gray cats that are not named “Fluffy.”
http://host/fmi/xml/fmresultset.xml?-db=petclinic&-lay=Patients
&-query=(q1, q2);!(q3)&-q1=typeofanimal&-q1.value=Cat&-q2=color
&-q2.value=Gray&-q3=name&-q3.value=Fluffy&-findquery

–recid (Record ID) query parameter
Specifies the record you want processed. Used mainly by the –edit, and –delete query
commands. Used by the –view command to retrieve related value list data in the
FMPXMLLAYOUT grammar.
Value is: A record ID, which is a unique specifier to a record in a FileMaker database
Required with: –edit, –delete, and –dup query commands
Optional with: –find query and –view commands
Example 1:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-recid=22&-delete

Example 2:
http://localhost/fmi/xml/FMPXMLLAYOUT.xml?-db=test&-lay=empty&-view&-recid=9

Appendix A | Valid names used in query strings 57
–relatedsets.filter (Filter portal records) query parameter
Specifies whether to filter the portal records to be returned in the results for this query.
Value is: layout or none
1 If –relatedsets.filter is set to layout, then the Initial row setting specified in the

FileMaker Pro Portal Setup dialog box is respected.
1 If the Show vertical scroll bar setting is enabled in the Portal Setup dialog box, then use

the –relatedsets.max option to specify the maximum number of records to be returned.
See “–relatedsets.max (Limit portal records) query parameter” below.

1 If the Show vertical scroll bar setting is disabled or the –relatedsets.max option is not
used, then the Number of rows setting in the Portal Setup dialog box determines the
number of portal records to be returned.

1 The default value is none if this parameter is not specified. If –relatedsets.filter is set
to none, then the Web Publishing Engine returns all records in the portal. The values for Initial
row and Number of rows specified in the Portal Setup dialog box are ignored.

Notes:

1 The –relatedsets.filter parameter has no impact on how portal records are sorted in
XML queries. The sort specified in FileMaker Pro is respected whether the
–relatedsets.filter parameter value is layout or none.

1 The Filter portal records setting in the Portal Setup dialog box is not supported for XML
queries. Any calculation specified for the Filter portal records setting is ignored.

Optional with: –find, –edit, –new, –dup, and –findquery.
Examples:
http://localhost/fmi/xml/fmresultset.xml?-db=FMPHP_Sample&-lay=English
&-relatedsets.filter=none&-findany
http://localhost/fmi/xml/fmresultset.xml?-db=FMPHP_Sample
&-lay=English&relatedsets.filter=layout&-relatedsets.max=all&-findany
http://localhost/fmi/xml/fmresultset.xml?-db=FMPHP_Sample&-lay=English
&-relatedsets.filter=layout&-relatedsets.max=10&-findany

–relatedsets.max (Limit portal records) query parameter
Specifies the maximum number of portal records to return in the results for this query.
Value is: an integer, or all.
1 The –relatedsets.max parameter is respected only if the Show vertical scroll bar setting

is enabled in the FileMaker Pro Portal Setup dialog box and the –relatedsets.filter
parameter is layout.
1 If the –relatedsets.max parameter specifies an integer, then the Web Publishing Engine

returns that number of portal records starting with the initial row.
1 If the –relatedsets.max parameter specifies all, then the Web Publishing Engine

returns all portal records.

Note For information on filtering portal records, see “–relatedsets.filter (Filter portal records)
query parameter” above.

Appendix A | Valid names used in query strings 58
Optional with: –find, –edit, –new, –dup, and –findquery.
Examples:
http://localhost/fmi/xml/fmresultset.xml?-db=FMPHP_Sample
&-lay=English&relatedsets.filter=layout&-relatedsets.max=all&-findany
http://localhost/fmi/xml/fmresultset.xml?-db=FMPHP_Sample&-lay=English
&-relatedsets.filter=layout&-relatedsets.max=10&-findany

–script (Script) query parameter
Specifies the FileMaker script to run after the query command and sorting are executed. See
“Understanding how an XML request is processed” on page 36.
Value is: Script name
Optional with: all query commands except –dbnames, –layoutnames, and –scriptnames
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-script=myscript&-findall

–script.param (Pass parameter to Script) query parameter
Passes a parameter to the FileMaker script specified by –script
Value is: A single text parameter.
1 To pass in multiple parameters, you can create a string delimiting the parameters and have your

script parse out the individual parameters. For example, pass “param1|param2|param3” as
a list with the “|” character URL-encoded as this: param1%7Cparam2%7Cparam3

1 To treat the text parameter as a value that is not text, your script can convert the text value. For
example, to convert the text value to a number, your script could include the following:
GetAsNumber(Get(ScriptParam))

1 If your query contains –script.param without –script, then –script.param is ignored.
1 If your query contains more than one –script.param, then the Web Publishing Engine uses

the last value that it parses.
Optional with: –script
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-script=myscript&-script.param=Smith%7CChatterjee%7CSu
&-findall

–script.prefind (Script before Find) query parameter
Specifies the FileMaker script to run before finding and sorting of records (if specified) during
processing of the –find query command
Value is: Script name
Optional with: all query commands except –dbnames, –layoutnames, and –scriptnames
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-script.prefind=myscript&-findall

Appendix A | Valid names used in query strings 59
–script.prefind.param (Pass parameter to Script before Find) query parameter
Passes a parameter to the FileMaker script specified by –script.prefind
Value is: A single text parameter.
1 To pass in multiple parameters, you can create a string delimiting the parameters and have your

script parse out the individual parameters. For example, pass “param1|param2|param3” as
a list with the “|” character URL-encoded as this: param1%7Cparam2%7Cparam3

1 To treat the text parameter as a value that is not text, your script can convert the text value. For
example, to convert the text value to a number, your script could include the following:
GetAsNumber(Get(ScriptParam))

1 If your query contains –script.prefind.param without –script.prefind, then
–script.prefind.param is ignored.

1 If your query contains more than one –script.prefind.param, then the Web Publishing
Engine uses the last value that it parses.

Optional with: –script.prefind
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-script.prefind=myscript&-script.prefind.param=payroll
&-findall

–script.presort (Script before Sort) query parameter
Specifies the FileMaker script to run after finding records (if specified) and before sorting records
during processing of the –find query command
Optional with: all query commands except –dbnames, –layoutnames, and –scriptnames
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-script.presort=myscript&-sortfield.1=dept
&-sortfield.2=rating&-findall

–script.presort.param (Pass parameter to Script before Sort) query parameter
Passes a parameter to the FileMaker script specified by –script.presort
Value is: A single text parameter.
1 To pass in multiple parameters, you can create a string delimiting the parameters and have your

script parse out the individual parameters. For example, pass “param1|param2|param3” as
a list with the “|” character URL-encoded as this: param1%7Cparam2%7Cparam3

1 To treat the text parameter as a value that is not text, your script can convert the text value. For
example, to convert the text value to a number, your script could include the following:
GetAsNumber(Get(ScriptParam))

1 If your query contains –script.presort.param without –script.presort, then
–script.presort.param is ignored.

1 If your query contains more than one –script.presort.param, then the Web Publishing
Engine uses the last value that it parses.

Optional with: –script.presort

Appendix A | Valid names used in query strings 60
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-script.presort=myscript&-script.presort.param=18%7C65
&-sortfield.1=dept&-sortfield.2=rating&-findall

–skip (Skip records) query parameter
Specifies how many records to skip in the found set
Value is: A number. If the value is greater than the number of records in the found set, then no
record is displayed. The default value is 0.
Optional with: –find query command
In the following example, the first 10 records in the found set are skipped and records 11 through
15 are returned.
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=departments&-skip=10&-max=5&-findall

–sortfield (Sort field) query parameter
Specifies the field to use for sorting
Value is: field name
Optional with: –find or –findall query commands
The –sortfield query parameter can been used multiple times to perform multiple field sorts.
The syntax for specifying the precedence of the sort fields is:
-sortfield.precedence-number=fully-qualified-field-name

where the precedence-number in the –sortfield.precedence-number query parameter
is a number that specifies the precedence to use for multiple sort fields. The value for
precedence-number:
1 must start from 1.
1 must increment sequentially.
1 must not be greater than 9.
In the following example, the “dept” field is sorted first, and then the “rating” field is sorted. Both
fields are sorted in ascending order because the –sortorder query parameter is not specified.
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=performance&-sortfield.1=dept&-sortfield.2=rating&-findall

Appendix A | Valid names used in query strings 61
–sortorder (Sort order) query parameter
Indicates the direction of a sort
Value is: The sort order. Valid sort orders are as follows, where <value-list-name> is a value
list name such as Custom:

Optional with: –find or –findall query commands
Requires: –sortfield query parameter
The –sortorder query parameter can been used with the –sortfield query parameter to
specify the sort order of multiple sort fields. The syntax for specifying the sort order of a sort field is:
-sortorder.precedence-number=sort-method

where:
1 precedence-number in the –sortorder.precedence-number parameter is a number

from 1 to 9 that specifies the –sortfield query parameter that the –sortorder query
parameter applies to.

1 sort-method is one of the keywords in the preceding table to specify the sort order, such as
ascend

In the following example, the sort order of the highest precedence sort field (dept) is ascend, and
the sort order of the second highest precedence sort field (rating) is descend. The precedence-
number 2 in -sortorder.2 specifies that the query parameter -sortorder.2=descend
applies to the -sortfield.2=rating query parameter.
Example:
http://192.168.123.101/fmi/xml/fmresultset.xml?-db=employees
&-lay=performance&-sortfield.1=dept&-sortorder.1=ascend&-sortfield.2=rating
&-sortorder.2=descend&-findall

Note If a –sortorder query parameter is not specified for a sort field, the default ascending sort
is used.

Keyword FileMaker Pro Equivalent Operator
ascend Sort a to z, -10 to 10

descend Sort z to a, 10 to -10

<value-list-name> Sort using the specified value list associated with the field on the layout

Appendix B
Error codes for Custom Web Publishing
The Web Publishing Engine generates error codes for database and query string errors that may
occur during an XML data request.
This appendix lists the error codes known at the time this document was published. For a list of
updated error codes, see the FileMaker Knowledge Base (http://help.filemaker.com).
Error code numbers in XML format

The Web Publishing Engine generates an error code for databases published in XML format
whenever data is requested. This type of error code value is inserted at the beginning of the XML
document in the <error code> element for the fmresultset grammar, or in the
<ERRORCODE> element for the FMPXMLRESULT or FMPXMLLAYOUT grammars. An error code of 0
indicates that no error has occurred.
Here is an example of the database error code in the fmresultset grammar:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE fmresultset PUBLIC "-//FMI//DTD fmresultset//EN"
"/fmi/xml/fmresultset.dtd">

<fmresultset xmlns="http://www.filemaker.com/xml/fmresultset" version="1.0">

<error code="0"></error>

Here is an example of the database error code in the FMPXMLRESULT grammar:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE FMPXMLRESULT PUBLIC "-//FMI//DTD FMPXMLRESULT//EN"
"/fmi/xml/FMPXMLRESULT.dtd">

<fmpxmlresult xmlns="http://www.filemaker.com/fmpxmlresult">

<ERRORCODE>0</ERRORCODE>

It is up to you, as the developer of the Custom Web Publishing solution, to check the value of the
<error code> or <ERRORCODE> element and handle it appropriately. The Web Publishing
Engine does not handle database errors.
Error code numbers for FileMaker databases
Error Number Description
-1 Unknown error

0 No error

1 User canceled action

2 Memory error

3 Command is unavailable (for example, wrong operating system, wrong mode, etc.)

4 Command is unknown

5 Command is invalid (for example, a Set Field script step does not have a calculation specified)

6 File is read-only

Appendix B | Error codes for Custom Web Publishing 63
7 Running out of memory

8 Empty result

9 Insufficient privileges

10 Requested data is missing

11 Name is not valid

12 Name already exists

13 File or object is in use

14 Out of range

15 Can’t divide by zero

16 Operation failed, request retry (for example, a user query)

17 Attempt to convert foreign character set to UTF-16 failed

18 Client must provide account information to proceed

19 String contains characters other than A-Z, a-z, 0-9 (ASCII)

20 Command or operation cancelled by triggered script

100 File is missing

101 Record is missing

102 Field is missing

103 Relationship is missing

104 Script is missing

105 Layout is missing

106 Table is missing

107 Index is missing

108 Value list is missing

109 Privilege set is missing

110 Related tables are missing

111 Field repetition is invalid

112 Window is missing

113 Function is missing

114 File reference is missing

115 Menu set is missing

116 Layout object is missing

117 Data source is missing

118 Theme is missing

130 Files are damaged or missing and must be reinstalled

131 Language pack files are missing (such as template files)

200 Record access is denied

201 Field cannot be modified

202 Field access is denied

Error Number Description

Appendix B | Error codes for Custom Web Publishing 64
203 No records in file to print, or password doesn’t allow print access

204 No access to field(s) in sort order

205 User does not have access privileges to create new records; import will overwrite existing data

206 User does not have password change privileges, or file is not modifiable

207 User does not have sufficient privileges to change database schema, or file is not modifiable

208 Password does not contain enough characters

209 New password must be different from existing one

210 User account is inactive

211 Password has expired

212 Invalid user account and/or password. Please try again

213 User account and/or password does not exist

214 Too many login attempts

215 Administrator privileges cannot be duplicated

216 Guest account cannot be duplicated

217 User does not have sufficient privileges to modify administrator account

218 Password and verify password do not match

300 File is locked or in use

301 Record is in use by another user

302 Table is in use by another user

303 Database schema is in use by another user

304 Layout is in use by another user

306 Record modification ID does not match

307 Transaction could not be locked because of a communication error with the host

308 Theme is in use by another user

400 Find criteria are empty

401 No records match the request

402 Selected field is not a match field for a lookup

403 Exceeding maximum record limit for trial version of FileMaker Pro

404 Sort order is invalid

405 Number of records specified exceeds number of records that can be omitted

406 Replace/Reserialize criteria are invalid

407 One or both match fields are missing (invalid relationship)

408 Specified field has inappropriate data type for this operation

409 Import order is invalid

410 Export order is invalid

412 Wrong version of FileMaker Pro used to recover file

413 Specified field has inappropriate field type

414 Layout cannot display the result

Error Number Description

Appendix B | Error codes for Custom Web Publishing 65
415 One or more required related records are not available

416 A primary key is required from the data source table

417 Database is not a supported data source

500 Date value does not meet validation entry options

501 Time value does not meet validation entry options

502 Number value does not meet validation entry options

503 Value in field is not within the range specified in validation entry options

504 Value in field is not unique as required in validation entry options

505 Value in field is not an existing value in the database file as required in validation entry options

506 Value in field is not listed on the value list specified in validation entry option

507 Value in field failed calculation test of validation entry option

508 Invalid value entered in Find mode

509 Field requires a valid value

510 Related value is empty or unavailable

511 Value in field exceeds maximum number of allowed characters

512 Record was already modified by another user

600 Print error has occurred

601 Combined header and footer exceed one page

602 Body doesn’t fit on a page for current column setup

603 Print connection lost

700 File is of the wrong file type for import

706 EPSF file has no preview image

707 Graphic translator cannot be found

708 Can’t import the file or need color monitor support to import file

709 QuickTime movie import failed

710 Unable to update QuickTime file reference because the database file is read-only

711 Import translator cannot be found

714 Password privileges do not allow the operation

715 Specified Excel worksheet or named range is missing

716 A SQL query using DELETE, INSERT, or UPDATE is not allowed for ODBC import

717 There is not enough XML/XSL information to proceed with the import or export

718 Error in parsing XML file (from Xerces)

719 Error in transforming XML using XSL (from Xalan)

720 Error when exporting; intended format does not support repeating fields

721 Unknown error occurred in the parser or the transformer

722 Cannot import data into a file that has no fields

723 You do not have permission to add records to or modify records in the target table

724 You do not have permission to add records to the target table

Error Number Description

Appendix B | Error codes for Custom Web Publishing 66
725 You do not have permission to modify records in the target table

726 There are more records in the import file than in the target table. Not all records were imported

727 There are more records in the target table than in the import file. Not all records were updated

729 Errors occurred during import. Records could not be imported

730 Unsupported Excel version (convert file to Excel 2000 format or a later supported version and try again)

731 File you are importing from contains no data

732 This file cannot be inserted because it contains other files

733 A table cannot be imported into itself

734 This file type cannot be displayed as a picture

735 This file type cannot be displayed as a picture. It will be inserted and displayed as a file

736 There is too much data to be exported to this format. It will be truncated.

737 Bento table you are importing is missing

800 Unable to create file on disk

801 Unable to create temporary file on System disk

802 Unable to open file.
This error can be cause by one or more of the following:
1 Invalid database name
1 File is closed in FileMaker Server
1 Invalid permission

803 File is single user or host cannot be found

804 File cannot be opened as read-only in its current state

805 File is damaged; use Recover command

806 File cannot be opened with this version of FileMaker Pro

807 File is not a FileMaker Pro file or is severely damaged

808 Cannot open file because access privileges are damaged

809 Disk/volume is full

810 Disk/volume is locked

811 Temporary file cannot be opened as FileMaker Pro file

813 Record Synchronization error on network

814 File(s) cannot be opened because maximum number is open

815 Couldn’t open lookup file

816 Unable to convert file

817 Unable to open file because it does not belong to this solution

819 Cannot save a local copy of a remote file

820 File is in the process of being closed

821 Host forced a disconnect

822 FMI files not found; reinstall missing files

823 Cannot set file to single-user, guests are connected

824 File is damaged or not a FileMaker file

Error Number Description

Appendix B | Error codes for Custom Web Publishing 67
825 File is not authorized to reference the protected file

826 File path specified is not a valid file path

850 Path is not valid for the operating system

851 Cannot delete an external file from disk

852 Cannot write a file to the external storage

900 General spelling engine error

901 Main spelling dictionary not installed

902 Could not launch the Help system

903 Command cannot be used in a shared file

904 Command can only be used in a file hosted under FileMaker Server

905 No active field selected; command can only be used if there is an active field

906 Current file is not shared; command can be used only if the file is shared

920 Can’t initialize the spelling engine

921 User dictionary cannot be loaded for editing

922 User dictionary cannot be found

923 User dictionary is read-only

951 An unexpected error occurred

954 Unsupported XML grammar

955 No database name

956 Maximum number of database sessions exceeded

957 Conflicting commands

958 Parameter missing in query

959 Custom Web Publishing technology is disabled

960 Parameter is invalid

1200 Generic calculation error

1201 Too few parameters in the function

1202 Too many parameters in the function

1203 Unexpected end of calculation

1204 Number, text constant, field name or "(" expected

1205 Comment is not terminated with "*/"

1206 Text constant must end with a quotation mark

1207 Unbalanced parenthesis

1208 Operator missing, function not found or "(" not expected

1209 Name (such as field name or layout name) is missing

1210 Plug-in function has already been registered

1211 List usage is not allowed in this function

1212 An operator (for example, +, -, *) is expected here

1213 This variable has already been defined in the Let function

Error Number Description

Appendix B | Error codes for Custom Web Publishing 68
1214 AVERAGE, COUNT, EXTEND, GETREPETITION, MAX, MIN, NPV, STDEV, SUM and
GETSUMMARY: expression found where a field alone is needed

1215 This parameter is an invalid Get function parameter

1216 Only Summary fields allowed as first argument in GETSUMMARY

1217 Break field is invalid

1218 Cannot evaluate the number

1219 A field cannot be used in its own formula

1220 Field type must be normal or calculated

1221 Data type must be number, date, time, or timestamp

1222 Calculation cannot be stored

1223 Function referred to is not yet implemented

1224 Function referred to does not exist

1225 Function referred to is not supported in this context

1300 The specified name can’t be used

1400 ODBC client driver initialization failed; make sure the ODBC client drivers are properly installed

1401 Failed to allocate environment (ODBC)

1402 Failed to free environment (ODBC)

1403 Failed to disconnect (ODBC)

1404 Failed to allocate connection (ODBC)

1405 Failed to free connection (ODBC)

1406 Failed check for SQL API (ODBC)

1407 Failed to allocate statement (ODBC)

1408 Extended error (ODBC)

1409 Extended error (ODBC)

1410 Extended error (ODBC)

1411 Extended error (ODBC)

1412 Extended error (ODBC)

1413 Extended error (ODBC)

1414 SQL statement is too long

1450 Action requires PHP privilege extension

1451 Action requires that current file be remote

1501 SMTP authentication failed

1502 Connection refused by SMTP server

1503 Error with SSL

1504 SMTP server requires the connection to be encrypted

1505 Specified authentication is not supported by SMTP server

1506 Email message(s) could not be sent successfully

1507 Unable to log in to the SMTP server

1550 Cannot load the plug-in or the plug-in is not a valid plug-in

Error Number Description

Appendix B | Error codes for Custom Web Publishing 69
1551 Cannot install the plug-in. Cannot delete an existing plug-in or cannot write to the folder or disk

1626 Protocol is not supported

1627 Authentication failed

1628 There was an error with SSL

1629 Connection timed out; the timeout value is 60 seconds

1630 URL format is incorrect

1631 Connection failed

Error Number Description

Appendix C
XML query changes in FileMaker 12
This appendix lists syntactic and semantic changes to the XML query commands and parameters
for FileMaker 12.
XML query changes in syntax

The following query commands have been deleted for FileMaker 12:
1 –process

The following query parameters have been deleted for FileMaker 12:
1 –encoding

1 –grammar

1 –stylehref

1 –styletype

1 –token.[string]
XML query changes in semantics
Differences in query parsing
The Web Publishing Engine for FileMaker 12 has significant changes to the order in which query
commands are parsed. See “Query command parsing” on page 44 for information on the query
command parsing order.
For example, as a result of the query command parsing order change, FileMaker 12 does not
support using a –find query with no find criteria, even if you include a –script parameter that
specifies the find criteria. For example, the following query command would work in FileMaker 11,
assuming the script performFind specifies the find criteria:
-db=Customers&-lay=account&-script=performFind&-find

But in FileMaker 12, this example returns error code 400 (Find criteria are empty). In FileMaker
12, you may include -findall as the find criteria:
-db=Customers&-lay=account&-findall&-script=performFind

In addition, the Web Publishing Engine for FileMaker 12:
1 Ignores valid commands or parameters that are extraneous in a query. For example, in the

following query, the –lop parameter is a valid parameter, but it is extraneous in the –delete
command:
-db=test&-lay=test&-recid=82&-delete&f1=hi&-lop=and

Because the –lop parameter uses the valid argument and, it is ignored, and no error is returned.

Appendix C | XML query changes in FileMaker 12 71
1 Ignores the same command passed more than once. For example: -dbnames&-dbnames
However, the Web Publishing Engine does return an error if you specify more than two different
commands in the same query. For example: -find&-edit

1 Ignores double ampersands or empty parameters in a query request. FileMaker 11 returns an error.
1 Converts all reserved words to lowercase. FileMaker 11 returns errors for uppercase reserved

words in some cases.
1 Ignores the field.op parameter for a query that is not a –find query. FileMaker 11 replaces

the field with the field.op parameter.
1 Ignores all non-global fields passed in for –findany, –findall, –find with recid,
–findquery, –delete, and –dup commands.

1 Requires global fields to be appended with the ".global" suffix.

Differences in query processing
The Web Publishing Engine for FileMaker 12:
1 Edits global fields for –findall, –findany, –find, –findquery, –new, –edit, and –dup

commands.
1 Resets global fields that are edited manually back to their original values after the query is

processed and results are returned. Global fields that are edited through a script are not reset.
1 Returns all records that satisfy the find criteria for a –find query with field-name.op set to
neq and –lop set to or. FileMaker 11 does not process this query correctly.

1 Returns all records that have a value for each field parameter passed as an empty string for a
–find query. FileMaker 11 removes each empty string field from the search criteria.

1 Returns decimal seconds for date, time, and timestamp fields. FileMaker 11 returns integer
seconds.

1 For value lists defined with the setting Include only related values starting from, returns no
values unless a recid is included. FileMaker 11 returns the values related to the first record.

Differences in error codes returned
Error condition FileMaker 11 error code FileMaker 12 error code
Invalid max or skip values. Example:
-db=basicfinds&-lay=layoutone&-max=-1&-findall

5 (Command is invalid) 960 (Parameter is invalid)

Sort order number is missing or invalid Example:
-db=basicsorts&-lay=layoutone
&-sortfield.=textfield&-findall

5 (Command is invalid) 404 (Sort order is invalid)

Invalid related table specified. Example: -db=relfinds
&-lay=layoutone
&aliasdoesntexist::relatedtextfield=sometext&-find

102 (Field is missing) 106 (Table is missing)

An empty sort field in a query. Example:
-db=basicsorts&-lay=layoutone&-sortfield.1=
&-findall

Ignored. No error code. 102 (Field is missing)

–find query submitted without any fields. Example:
-db=basicedits&-lay=layoutone&-find

No error. FileMaker 11
returns all records.

400 (Find criteria are
empty)

–find query submitted with only global fields. Example:
-db=basicfinds&-lay=layoutone
&globaltextfield.global=sales&-find

No error. FileMaker 11
returns all records.

400 (Find criteria are
empty)

Index
A
access log files for web server, described 40
access privileges 14
accounts and privileges

enabling for Custom Web Publishing 13
Guest account 14
scripts 17

Admin Console 14, 22
application log 40
ASCII characters, in XML documents 34
authentication of web users 13
auto-enter attribute 27
available scripts 50

B
Basic Authentication for web users 13

C
Change Password script 14
commands for queries. See query strings
comparison operators for fields 53
compound find query command 49
compound find query parameter 55
container fields

how web users access data 17
publishing contents of 15
URL syntax for accessing in XML solutions 23
with externally stored data 16
with referenced files 15

creating a new record 50
Custom Web Publishing

access to solutions by web users 13
definition 7
enabling in database 13
enabling in Web Publishing Engine 14
extended privilege for 13
Guest account 14
new features in 10
overview 7
requirements for 11
restricting IP address access in web server 14
scripts 18
using a static IP address 12
using scripts 17
with PHP 9
with XML 9, 20

Custom Web Publishing Engine (CWPE) 21

D
database error codes 25
database layouts available 50
databases, protecting when published 14
<datasource> element 26
–db query parameter 51
–dbnames query command 48
–delete query command 48
–delete.related query parameter 47
deleted for FileMaker 12

–encoding query parameter 70
–grammar query parameter 70
–process query command 70
–stylehref query parametet 70
–styletype query parameter 70
–token query parameter 70

deleting portal records 47
document type definitions (DTDs) 25, 29
documentation 6
documentation information 6, 12
–dup query command 48

E
–edit query command 48
electronic documentation 6
elements

database error code 25
in FMPXMLLAYOUT grammar 31
in FMPXMLRESULT grammar 29
in fmresultset grammar 26

enabling Custom Web Publishing in database 13
encoding

URLs 24
XML data 25, 34

–encoding query parameter
deleted for FileMaker 12 70

<error code> and <ERRORCODE> elements 62
errors

about error codes 62
database error code elements 25
database error code numbers 62
log files for web server 40

examples of
generated FMPXMLLAYOUT grammar 33
generated FMPXMLRESULT grammar 30
generated fmresultset grammar 28

export XML data 20
extended privilege for Custom Web Publishing 13
Extensible Markup Language (XML). See XML

F
field name query parameter (non-container) 52
field names, fully qualified syntax 45
–field query parameter (container) 52
<field-definition> element 27
–fieldname.op query parameter 53

73
FileMaker API for PHP 9
definition 9

FileMaker Pro, contrast with Web Publishing Engine 20
FileMaker Server

documentation 6
installing 6

FileMaker Server Admin Console 14, 22
filtering portal field records 57
–find query command 49
–findall query command 49
–findany query command 49
–findquery query command 49
FMPXMLLAYOUT grammar 20, 31–33

compared to other grammars 24
FMPXMLRESULT grammar 20, 29–30

compared to other grammars 24
fmresultset grammar 20, 26–28

compared to other grammars 24
fmxml keyword for enabling XML publishing 13, 22
four-digit-year attribute 27
fully qualified field name, syntax of 45

G
global attribute 27
global fields

syntax of 47
–grammar query parameter

deleted for FileMaker 12 70
grammars for XML, described 24
Guest account

disabling 14
enabling 14
with Custom Web Publishing 14

H
HTML

forms for XML requests 22

I
import XML data 20
installation documentation 6
Instant Web Publishing

definition 7
documentation 6

J
JDBC documentation 6

K
keywords for enabling Custom Web Publishing 13, 22

L
–lay query parameter 36, 54
–lay.response query parameter 36, 54
–layoutnames query command 50
layouts, switching for an XML response 36
limiting portal field records 57
log files 39

described 40
Tomcat 42
web server access 40
web_server_module_log.txt 42

–lop query parameter 54

M
–max query parameter 54
max-characters attribute 27
max-repeat attribute 27
<metadata> element 27
MIME (Multipurpose Internet Mail Extensions) types 15
–modid query parameter 55
monitoring websites 40

N
name attribute 27
namespaces for

XML 25
new features in Custom Web Publishing 10
–new query command 50
not-empty attribute 27
numbers for

database error codes 62
numeric-only attribute 27

O
ODBC documentation 6
online documentation 6
operators, comparison 53
order of XML request processing 36
overview

Custom Web Publishing 7
overview of steps for

XML data access 22

P
parameters for queries. See query strings
passwords

Basic Authentication for web users 13
Change Password script 14
defining for Custom Web Publishing 13
no login password 14

PDFs 6
PHP

advantages 9
PHP API for Custom Web Publishing 9
portal field queries 57

74
portals
adding records 46
deleting records 47
editing records 46
initial row 57
layout 57
number of records 57
sorting records 57

privilege set, assigning for Custom Web Publishing 13
–process query command

deleted for FileMaker 12 70
processing a Web Publishing Engine request 8
progressive download 15, 16
protecting published databases 14
publishing on the web

connecting to Internet or intranet 11
container field objects 15
database error codes 62
protecting databases 14
QuickTime movies 15
requirements for 11
using XML 22

Q
–query query parameter 55
query strings 34, 43

adding records to portals 46
commands and parameters 34, 43
editing records in portals 46
fully qualified field name, syntax of 45
global fields, syntax of 47
guidelines for 43
requesting XML data 34, 43

querying portal fields 47
QuickTime movies, publishing on the web 15

R
–recid query parameter 56
<relatedset-definition> element 27
–relatedsets.filter query parameter 57
–relatedsets.max query parameter 57
Re-Login script 14
requests for XML data 22
requirements for Custom Web Publishing 11
result attribute 27
<resultset> element 27
retrieving available script names 50
retrieving layout information 51
retrieving layout names 50

S
SAT

see FileMaker Server Admin Console 14
–script query parameter 58
–script.param query parameter 58
–script.prefind query parameter 58
–script.prefind.param query parameter 59
–script.presort query parameter 59
–script.presort.param query parameter 59
–scriptnames query command 50
scripts

accounts and privileges 17
Change Password 14
for XML requests 22
in Custom Web Publishing 17
Re-Login 14
tips and considerations 17
triggers 19

security
accounts and passwords 14
documentation 8
guidelines for protecting published databases 14
restricting access from IP addresses 14

–skip query parameter 60
–sortfield query parameter 60
sorting portal field records 57
–sortorder query parameter 61
specifying layout when requesting XML data 36
SSL (Secure Sockets Layer) encryption 14
static publishing, definition 7
–stylehref query parameter

deleted for FileMaker 12 70
stylesheets

testing 39
–styletype query parameter

deleted for FileMaker 12 70
summary of steps for

XML data access 22
switching layout for XML response 36
switching layouts for an XML response 36

T
testing

websites 39
XML output 39

text encoding
generated XML data 25
URLs 24

time-of-day attribute 27
–token query parameter

deleted for FileMaker 12 70
Tomcat

using log files 42
triggers 19
troubleshooting

Custom Web Publishing websites 39
XML document access 37

type attribute 27

75
U
Unicode characters 34
URL syntax for

container objects in XML solutions 23
XML requests 22

URL text encoding 24
user names

Basic Authentication for web users 13
defining for Custom Web Publishing 13

UTF-8 (Unicode Transformation 8 Bit)
format 24, 34

V
–view query command 51

W
web browsers

role in XML requests 21
Web folder, copying container field objects 15
Web Publishing Core

illustrated 21
Web Publishing Engine

Admin Console 22
application log 40
benefits of 10
described 8
generated error codes 62
generating XML data 21
generating XML documents 22
request processing 8

web server
log files 40
MIME type support 15
role in XML requests 21

web users
accessing protected databases 13
requirements for accessing Custom Web Publishing

solutions 11
using container field data 17

web_server_module_log.txt log file 42
websites

creating with Web Publishing Engine 10
FileMaker support pages 6
monitoring 40
testing 39
X
XML

described 20
document type definitions (DTDs) 25, 26, 29
enabling in database 13
encoded using UTF-8 format 25, 34
FMPXMLLAYOUT grammar 31
FMPXMLRESULT grammar 29
fmresultset grammar 26

<datasource> element 26
<field-definition> element 27
<metadata> element 27
<relatedset-definition> element 27
<resultset> element 27

generating XML data from request 21
grammars, described 24
namespaces for 25
order of request processing 36
parsers 22, 34
query strings 34, 43
requesting data 22
summary of steps for accessing XML data 22
troubleshooting access to XML documents 37
URL text encoding 24
XML 1.0 specification 20

XML advantages 9
XML custom web publishing 9
XML request

specifying layout 36
XML response

switching layout 36
<xsl:stylesheet> element 39
<xsl:template> element 39

	Preface
	About this guide

	Chapter 1 Introducing Custom Web Publishing
	About the Web Publishing Engine
	How a Web Publishing Engine request is processed

	Custom Web Publishing with PHP
	Custom Web Publishing with XML
	Comparing PHP to XML
	Reasons to choose PHP
	Reasons to choose XML

	Chapter 2 About Custom Web Publishing with XML
	Creating dynamic websites with the Web Publishing Engine
	Key features in Custom Web Publishing with XML
	Web publishing requirements
	What is required to publish a database using Custom Web Publishing
	What web users need to access a Custom Web Publishing solution
	Connecting to the Internet or an intranet

	Where to go from here

	Chapter 3 Preparing databases for Custom Web Publishing
	Enabling Custom Web Publishing in a database
	Accessing a protected database
	Protecting your published databases
	Web server support for Internet media types (MIME)
	About publishing the contents of container fields on the web
	Container field objects embedded in a database
	Container fields with referenced files
	Container fields with externally stored data
	How web users view container field data

	FileMaker scripts and Custom Web Publishing
	Script tips and considerations
	Script behavior in Custom Web Publishing solutions
	Script triggers and Custom Web Publishing solutions

	Chapter 4 Accessing XML data with the Web Publishing Engine
	Using Custom Web Publishing with XML
	Differences between the Web Publishing Engine and FileMaker Pro XML Import/Export
	How the Web Publishing Engine generates XML data from a request

	General process for accessing XML data from the Web Publishing Engine
	About the URL syntax for XML data and container objects
	About the URL syntax for XML data
	About the URL syntax for FileMaker container objects in XML solutions
	About URL text encoding

	Accessing XML data via the Web Publishing Engine
	About namespaces for FileMaker XML
	About FileMaker database error codes
	Retrieving the document type definitions for the FileMaker grammars

	Using the fmresultset grammar
	Description of elements in the fmresultset grammar
	Example of XML data in the fmresultset grammar

	Using other FileMaker XML grammars
	Description of elements in the FMPXMLRESULT grammar
	Example of XML data in the FMPXMLRESULT grammar
	Description of elements in the FMPXMLLAYOUT grammar
	Example of XML data in the FMPXMLLAYOUT grammar

	About UTF-8 encoded data
	Using FileMaker query strings to request XML data
	Switching layouts for an XML response
	Understanding how an XML request is processed
	Troubleshooting XML document access

	Chapter 5 Staging, testing, and monitoring a site
	Staging a Custom Web Publishing site
	Testing a Custom Web Publishing site
	Examples of stylesheets for testing XML output
	Monitoring your site
	Using the web server access and error logs
	Using the Web Publishing Engine log
	Using the Web Server Module error log
	Using the Tomcat logs

	Appendix A Valid names used in query strings
	About the query commands and parameters
	Guidelines for using query commands and parameters
	Query command parsing
	About the syntax for a fully qualified field name
	Using query commands with portal fields
	About the syntax for specifying a global field

	Query command reference
	–dbnames (Database names) query command
	–delete (Delete record) query command
	–dup (Duplicate record) query command
	–edit (Edit record) query command
	–find, –findall, or –findany (Find records) query commands
	–findquery (Compound find) query command
	–layoutnames (Layout names) query command
	–new (New record) query command
	–scriptnames (Script names) query command
	–view (View layout information) query command

	Query parameter reference
	–db (Database name) query parameter
	–delete.related (Portal records delete) query parameter
	–field (Container field name) query parameter
	fieldname (Non-container field name) query parameter
	fieldname.op (Comparison operator) query parameter
	–lay (Layout) query parameter
	–lay.response (Switch layout for response) query parameter
	–lop (Logical operator) query parameter
	–max (Maximum records) query parameter
	–modid (Modification ID) query parameter
	–query (Compound find request) query parameter
	–recid (Record ID) query parameter
	–relatedsets.filter (Filter portal records) query parameter
	–relatedsets.max (Limit portal records) query parameter
	–script (Script) query parameter
	–script.param (Pass parameter to Script) query parameter
	–script.prefind (Script before Find) query parameter
	–script.prefind.param (Pass parameter to Script before Find) query parameter
	–script.presort (Script before Sort) query parameter
	–script.presort.param (Pass parameter to Script before Sort) query parameter
	–skip (Skip records) query parameter
	–sortfield (Sort field) query parameter
	–sortorder (Sort order) query parameter

	Appendix B Error codes for Custom Web Publishing
	Error code numbers in XML format
	Error code numbers for FileMaker databases

	Appendix C XML query changes in FileMaker 12
	XML query changes in syntax
	XML query changes in semantics
	Differences in query parsing
	Differences in query processing
	Differences in error codes returned

	Index

